Bộ Đề thi Học kì 1 Toán 9 năm 2024-2025 có đáp án (30 đề)
Trọn bộ 30 đề thi Học kì 1 Toán 9 sách mới Chân trời sáng tạo, Kết nối tri thức, Cánh diều có đáp án và ma trận sẽ giúp bạn ôn tập và đạt điểm cao trong bài thi Toán 9.
Xem thử Đề thi CK1 Toán 9 KNTT Xem thử Đề thi CK1 Toán 9 CTST Xem thử Đề thi CK1 Toán 9 CD
Chỉ từ 90k mua trọn bộ đề thi Toán 9 Học kì 1 bản word có lời giải chi tiết, dễ dàng chỉnh sửa:
- B1: gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận giáo án
Xem thử Đề thi CK1 Toán 9 KNTT Xem thử Đề thi CK1 Toán 9 CTST Xem thử Đề thi CK1 Toán 9 CD
Lưu trữ: Đề thi Học kì 1 Toán 9 (sách cũ)
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2024 - 2025
Môn: Toán 9
Thời gian làm bài: 90 phút
Bài 1 (2,0 điểm) :
a) Rút gọn biểu thức:
b) Giải phương trình:
Bài 2 (2,0 điểm) : Cho hai biểu thức
a) Tính giá trị của biểu thức A khi x = 25
b) Rút gọn biểu thức B
c) Đặt P = A.B. Tìm giá trị nguyên của x để P < 1
Bài 3 (2,0 điểm) : Cho hàm số y = (2 – m)x + m + 1 (với là tham số và m khác 2) có đồ thị là đường thẳng (d).
a) Tìm m để đồ thị hàm số đi qua điểm A(-1;5); vẽ đồ thị hàm số với giá trị của m vừa tìm được
b) Tìm m để đường thẳng (d) cắt đường thẳng y = 3x – 1 tại điểm có hoành độ bằng 2, tìm tọa độ giao điểm.
Bài 4 (3,5 điểm) : Cho đường tròn (O;R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O;R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh rằng: DC // OA
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS
Bài 5 (0,5 điểm) : Giải phương trình:
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2024 - 2025
Môn: Toán 9
Thời gian làm bài: 90 phút
Bài 1 (2,0 điểm) : Cho biểu thức
1) Tính giá trị của biểu thức A khi x = 16
2) Rút gọn biểu thức . với x > 0; x ≠ 4
3) Tìm các giá trị của x để
Bài 2 (2,0 điểm) :
1) Thực hiện phép tính:
2) Giải các phương trình sau:
Bài 3 (2,0 điểm) : Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d)
1) Vẽ đường thẳng (d) khi m = 2
2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1
3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1
Bài 4 (3,5 điểm) : Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D.
1) Chứng minh rằng: ΔMEN vuông tại E. Từ đó chứng minh DE.DM = DN2
2) Từ O kẻ OI vuông góc với ME (I ∈ ME).
Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn.
3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O.
4) Chứng minh rằng:
Bài 5 (0,5 điểm) : Cho x, y là các số dương và
Tìm giá trị nhỏ nhất của biểu thức P = x + y
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2024 - 2025
Môn: Toán 9
Thời gian làm bài: 90 phút
Bài 1 (2,0 điểm) : Cho hai biểu thức với x ≥ 0; x ≠ 1
a) Tính giá trị của biểu thức A khi
b) Rút gọn biểu thức B
c) Tìm giá trị lớn nhất của biểu thức
Bài 2 (3,0 điểm) : Cho hàm số y = mx + 1 (1) (với m là tham số, m ≠ 0)
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(-1; -1). Với m vừa tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy
b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d): y = (m2 – 2)x + 2m + 3.
c) Tìm m để khoảng cách từ gốc tọa độ O đến đồ thị hàm số (1) bằng
Bài 3 (4,0 điểm) : Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Bài 5 (0,5 điểm) :
Cho một mảnh giấy hình vuông ABCD cạnh 6cm. Gọi E, F lần lượt là hai điểm nằm trên cạnh AB và BC sao cho AE = 2cm, BF = 3cm. Bạn Nam muốn cắt một hình thang EFGH (như hình bên) sao cho hình thang đó có diện tích nhỏ nhất. Xác định vị trí của H trên cạnh AD, để bạn Nam có thể thực hiện mong muốn của mình?
....................................
....................................
....................................
Trên đây là phần tóm tắt một số đề thi trong các bộ đề thi Toán 9 năm học 2024 - 2025 Học kì 1, để xem đầy đủ mời quí bạn đọc lựa chọn một trong các bộ đề thi ở trên!
Xem thêm bộ đề thi Toán 9 năm học 2024 - 2025 chọn lọc khác:
- Giáo án lớp 9 (các môn học)
- Giáo án điện tử lớp 9 (các môn học)
- Giáo án Toán 9
- Giáo án Ngữ văn 9
- Giáo án Tiếng Anh 9
- Giáo án Khoa học tự nhiên 9
- Giáo án Vật Lí 9
- Giáo án Hóa học 9
- Giáo án Sinh học 9
- Giáo án Địa Lí 9
- Giáo án Lịch Sử 9
- Giáo án GDCD 9
- Giáo án Tin học 9
- Giáo án Công nghệ 9
- Đề thi lớp 9 (các môn học)
- Đề thi Ngữ Văn 9 (có đáp án)
- Đề thi Toán 9 (có đáp án)
- Đề thi Tiếng Anh 9 mới (có đáp án)
- Đề thi Tiếng Anh 9 (có đáp án)
- Đề thi Khoa học tự nhiên 9 (có đáp án)
- Đề thi Lịch Sử và Địa Lí 9 (có đáp án)
- Đề thi GDCD 9 (có đáp án)
- Đề thi Tin học 9 (có đáp án)
- Đề thi Công nghệ 9 (có đáp án)