Từ các công thức khai triển (a + b)^0 = 1; (a + b)^1 = a + b

Khám phá 2 trang 35 Chuyên đề Toán 10: Từ các công thức khai triển:

(a + b)0 = 1;

(a + b)1 = a + b;

(a + b)2 = a2 + 2ab + b2;

(a + b)3 = a3 + 3a2b + 3ab2 + b3;

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4;

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5;

các hệ số được viết thành bảng số như Hình 2 sau đây. Nếu sử dụng kí hiệu tổ hợp thì nhận được bảng như Hình 3.

Từ các công thức khai triển (a + b)^0 = 1; (a + b)^1 = a + b

Từ các đẳng thức như

C30=C33=1,C41=C43=4,C30+C31=C41,C42+C43=C53,

có thể dự đoán rằng, với mỗi n*

Cnk=Cnn-k(0kn);

Cnk-1+Cnk=Cn+1k(1kn).

Hãy chứng minh các công thức trên.

Gợi ý: Sử dụng công thức Cnk=n!k!(n-k)!,n,0kn.

Lời giải:

+) Có Cnk=n!k!(n-k)!,Cnn-k=n!(n-k)![n-(n-k)]!=n!(n-k)!k!=n!k!(n-k)!.

Vậy Cnk=Cnn-k.

+) Cnk-1+Cnk=n!(k-1)!(n-k+1)!+n!k!(n-k)!

=(n+1)!n+1k!k(n-k+1)!+(n+1)!n+1k!(n-k+1)!(n-k+1)=kn+1.(n+1)!k!(n-k+1)!+n-k+1n+1.(n+1)!k!(n-k+1)!

=kn+1.(n+1)!k![(n+1)-k]!+n-k+1n+1.(n+1)!k![(n+1)-k]!

=kn+1.Cn+1k+n-k+1n+1.Cn+1k=(kn+1+n-k+1n+1)Cn+1k

=k+(n-k+1)n+1Cn+1k=n+1n+1Cn+1k=Cn+1k.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học