Lý thuyết Phương trình bậc hai một ẩn lớp 9 (hay, chi tiết)
Bài viết Lý thuyết Phương trình bậc hai một ẩn lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Phương trình bậc hai một ẩn.
Bài giảng: Bài 3: Phương trình bậc hai một ẩn - Thầy Đinh Trường Giang (Giáo viên VietJack)
1. Định nghĩa
Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0. Trong đó x là ẩn số; a, b, c là những số cho trước gọi là các hệ số và a ≠ 0.
Ví dụ:
+ x2 - 5x + 4 = 0 là phương trình bậc hai một ẩn trong đó a = 1; b = -5; c = 4
+ 2x2 - 13x + 17 = 0 là phương trình bậc hai một ẩn trong đó a = -2; b = -13; c = 17.
+ x2 – 10 = 0 là phương trình bậc hai một ẩn có a = 1; b = 0 và c = -10
+ x2 + 20x = 0 là phương trình bậc hai một ẩn có a = 1 và b = 20; c = 0
2. Giải phương trình với hai trường hợp đặc biệt
a) Trường hợp c = 0.
Khi đó phương trình có dạng: ax2 + bx = 0 ⇔ x(ax + b) = 0
Phương trình có nghiệm: x1 = 0; x2 = -b/a
Ví dụ: Giải phương trình x2 - 3x = 0
Ta có: x2 - 3x = 0 ⇔ x(x - 3) = 0
Vậy phương trình có hai nghiệm là x1 = 0; x2 = 3
b) Trường hợp b = 0
Khi đó phương trình có dạng: ax2 + c = 0 ⇔ x2 = -c/a
+ Nếu a, c cùng dấu thì -c/a < 0 ⇒ phương trình vô nghiệm.
+ Nếu a, c khác dấu thì -c/a > 0 ⇒ phương trình có hai nghiệm
Ví dụ: Giải phương trình 2x2 - 3 = 0.
Ta có:
Vậy phương trình có hai nghiệm
3. Ví dụ
Ví dụ 1: Đưa các phương trình sau về dạng ax2 + bx + c = 0 rồi chỉ rõ các hệ số a, b, c của phương trình ấy. Các phương trình: 5x2 - 3x = 10x + 100; x2 = 900
Giải:
+ Ta có: 5x2 - 3x = 10x + 100 ⇔ 5x2 - 13x - 100 = 0
Hệ số a = 5; b = -13; c = -100
+ Ta có: x2 = 900 ⇔ x2 - 900 = 0
Hệ số a = 1, b = 0; c = -900
Ví dụ 2: Giải các phương trình sau bằng cách thêm bớt thích hợp
a) x2 + 6x = -8
b) x2 + x = 7
Giải:
a) Ta có: x2 + 6x = -8 ⇔ x2 + 6x + 9 = -8 + 9
⇔ (x + 3)2 = 1
Vậy phương trình đã cho có x = -2 hoặc x = -4
b) Ta có:
Vậy phương trình đã cho có nghiệm là
Câu 1: Giải phương trình bằng cách phân tích đa thức thành nhân tử x2 - 7x + 12 = 0
Lời giải:
Ta có:
Vậy phương trình đã có có nghiệm hoặc
Câu 2: Giải phương trình
Lời giải:
Ta có:
Vậy phương trình đã cho có nghiệm là x = -3
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 4: Công thức nghiệm của phương trình bậc hai (hay, chi tiết)
- Trắc nghiệm Bài 4 (có đáp án): Công thức nghiệm của phương trình bậc hai
- Lý thuyết Bài 5: Công thức nghiệm thu gọn (hay, chi tiết)
- Trắc nghiệm Bài 5 (có đáp án): Công thức nghiệm thu gọn
- Lý thuyết Bài 6: Hệ thức Vi-ét và ứng dụng (hay, chi tiết)
- Trắc nghiệm Bài 6 (có đáp án): Hệ thức Vi-ét và ứng dụng
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều