Đường thẳng song song với mặt phẳng và cách giải bài tập (hay, chi tiết)



Bài viết Đường thẳng song song với mặt phẳng và cách giải bài tập sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 11.

I. Lý thuyết ngắn gọn

1. Vị trí tương đối của đường thẳng và mặt phẳng

Cho đường thẳng a và mặt phẳng (P). Căn cứ vào số điểm chung của đường thẳng và mặt phẳng ta có ba trường hợp sau:

a. Đường thẳng a và mặt phẳng (P) không có điểm chung, tức là:

a ∩ (P) = φ ⇔ a // (P) 

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

b. Đường thẳng a và mặt phẳng (P) chỉ có một điểm chung, tức là:

a ∩ (P) = A ⇔ a cắt (P) tại A

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

c. Đường thẳng a và mặt phẳng (P) có hai điểm chung, tức là:

a ∩ (P) = {A,B} ⇔ a ⊂ (P) (Đường thẳng a nằm trong mặt phẳng (P))

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

2. Điều kiện để một đường thẳng song song với một mặt phẳng

Nhận xét: Cho đường thẳng b nằm trong mặt phẳng (P) và một đường thẳng a song song với b. Lấy một điểm I tùy ý trên a. Khi đó:

- Nếu I thuộc (P) thì a nằm trong (P)

- Nếu I không thuộc (P) thì a song song với (P)

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Định lí 1: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nào đó trong (P) thì a song song với (P).

3. Tính chất

Định lí 2: Nếu đường thẳng a song song với mặt phẳng (P) thì mọi mặt phẳng (Q) chứa a mà cắt (P) thì cắt theo giao tuyến song song với a.

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Hệ quả 1: Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng.

Hệ quả 2: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó.

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Hệ quả 3: Nếu a và b là hai đường thẳng chéo nhau thì có duy nhất một mặt phẳng chứa a và song song với b.

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

II. Các dạng bài tập

Dạng 1: Chứng minh đường thẳng song song với mặt phẳng

Phương pháp giải: Để chứng minh đường thẳng d song song với mặt phẳng (α), ta chứng minh d không nằm trong (α) và song song với đường thẳng a chứa trong (α)  

Tức: Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11 

Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD. Trên BC lấy M sao cho MB = 2MC. Chứng minh MG // (ACD).

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Lời giải:

Gọi I là trung điểm AD.

Trong tam giác CBI có: Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11 (theo giả thuyết và tính chất trọng tâm)

Nên MG // CI (Định lý Ta – lét)

Mà CI nằm trong mặt phẳng (ACD)

Vậy MG // (ACD).

Ví dụ 2: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC.

a. Chứng minh MN // (BCD).

b. Gọi d là giao tuyến của hai mặt phẳng (DMN) và (DBC). Xét vị trí tương đối của d và mặt phẳng (ABC).

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Lời giải:

a. Ta có: MN là đường trung bình của tam giác ABC

Suy ra: MN // BC

Mà BC nằm trong mặt phẳng (BCD)

Vậy: MN // (BCD).

b. Vì MN // (BCD) 

Nên (DMN) đi qua MN cắt (BCD) theo giao tuyến d đi qua D và song song với MN.

Mà MN nằm trong (ABC)

Do đó: d // (ABC).

Dạng 2: Dựng thiết diện song song với một đường thẳng

Phương pháp giải: Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.

Nghĩa là: Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11 

Thiết diện cắt bởi một mặt phẳng chứa một đường thẳng song song với đường thẳng đã cho trước được xác định bằng cách phối hợp hai cách xác định giao tuyến đã biết.

Ví dụ minh họa

Ví dụ 3: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm của AC và BD, M là trung điểm SA. Tìm thiết diện của mặt phẳng  (α) với hình chóp S.ABCD nếu (α) qua M và song song với SC và AD.

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Lời giải:

(α) // AD nên (α) cắt hai mặt phẳng (SAD) và (ABCD) theo hai giao tuyến song song với AD.

Tương tự (α) // SC nên (α) cắt hai mặt phẳng (SAC) và (SCD) theo hai giao tuyến song song với SC.

Có: OM // SC (đường trung bình tam giác SAC)

Qua O kẻ đường thẳng song song với AD, cắt AB và CD tại Q và P

Qua M kẻ đường thẳng song song với AD cắt SD tại N

Theo nhận xét trên ta có: MN // PQ // SC

Vậy thiết diện là hình thang MNPQ.

Ví dụ 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA.

Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11

Lời giải:

Qua M vẽ đường thẳng song song với BD cắt AD tại N và cắt AC tại I

Qua M, I, N vẽ các đường thẳng song song với SA lần lượt cắt SB, SC, SD tại R, Q, P.

Thiết diện là ngũ giác MNPQR

III. Bài tập áp dụng

1. Tự luận

Bài 1: Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng đi qua O, song song với AB và SC. Thiết diện đó là hình gì?

Bài 2: Cho tứ diện ABCD. Lấy M trên AB. Một mặt phẳng đi qua M, song song với AC và BD. Thiết diện của tứ diện cắt bởi mặt phẳng đó là hình gì ?

Bài 3: Cho tứ diện ABCD. Gọi M, N lần lượt là trọng tâm các tam giác ABD và BCD. Chứng minh MN // (ACD) và MN // (ABC).

Bài 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAB và I là trung điểm AB. M trên AD sao cho AD = 3AM. Đường thẳng qua M song song với AB cắt CI tại N. Chứng minh NG // (SCD).

Bài 5: Cho tứ diện ABCD. Gọi E, F lần lượt là trọng tâm các tam giác ACD và BCD. Chứng minh EF song song với các mặt phẳng (ABC) và (ABD).

2. Trắc nghiệm

Bài 1: Cho hai đường thẳng a, b chéo nhau. Hỏi có bao nhiêu mặt phẳng chứa a và song song với b?
 A. 0

B. 1

C. 2

D. Vô số

Bài 2: Cho hai đường thẳng a và b cùng song song với mặt phẳng (P). Khẳng định nào không sai?

A. a // b

B. a và b chéo nhau

C. a và b cắt nhau

D. Chưa đủ điều kiện để kết luận vị trí tương đối của a và b

Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm SC. Khẳng định nào sai?

A. IO // mp (SAB)

B. IO // mp (SAD)

C. mp (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác

D. (IBD) ∩ (SAC) = IO 

Bài 4: Cho tứ diện ABCD. Gọi E, F là trọng tâm các tam giác BCD và ACD. Khẳng định nào sai?

A. EF // (ABD)

B. EF // (ABC)

C. BE, AF và CD đồng quy

D. Đường thẳng song song với mặt phẳng và cách giải bài tập hay, chi tiết | Toán lớp 11 

Bài 5: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (α) cắt SC tại K. Khẳng định nào sau đây là khẳng định đúng? 

A. SK = 2KC

B. SK = KC

C. SK = 3KC

D. 2SK = KC

Xem thêm phương pháp giải các dạng bài tập Toán lớp 11 có đáp án, hay khác:




Giải bài tập lớp 11 sách mới các môn học