Xác suất của biến cố đối là gì lớp 10 (chi tiết nhất)
Bài viết Xác suất của biến cố đối là gì lớp 10 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Xác suất của biến cố đối.
1. Xác suất của biến cố đối
Cho E là một biến cố. Xác suất của biến cố liên hệ với xác suất của E bởi công thức sau:
.
Chú ý: Trong một số bài toán, nếu tính trực tiếp xác suất của biến cố gặp khó khăn, ta có thể tính gián tiếp bằng cách tính xác suất của biến cố đối của nó.
2. Ví dụ minh họa về xác suất của biến cố đối
Ví dụ 1. Gieo đồng thời ba con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tích số chấm ở mặt xuất hiện trên ba con xúc xắc đó là số chẵn”.
a) Hãy tìm biến cố đối của biến cố A.
b) Hãy tính xác suất của biến cố A.
Hướng dẫn giải
a) Biến cố đối của biến cố A là biến cố “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc đó là số lẻ”.
b) Tổng số kết quả có thể xảy ra của phép thử là n(Ω) = 63.
xảy ra khi mặt xuất hiện trên cả ba con xúc xắc đều có số chấm là số lẻ. Số kết quả thuận lợi cho là .
Xác suất của biến cố là .
Xác suất của biến cố A là .
Ví dụ 2. Một hộp có 10 quả bóng trắng và 10 quả bóng đỏ; các quả bóng có kích thước và khối lượng giống nhau. Lấy ngẫu nhiên đồng thời 9 quả bóng trong hộp. Tính xác suất để trong 9 quả bóng được lấy ra có ít nhất một quả bóng màu đỏ.
Hướng dẫn giải
Mỗi cách lấy ra đồng thời 9 quả bóng là một tổ hợp chập 9 của 20 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 9 của 20 phần tử và .
Xét biến cố K: “Trong 9 quả bóng được lấy ra có ít nhất một quả bóng màu đỏ”.
Khi đó biến cố đối của biến cố K là biến cố : “Trong 9 quả bóng được lấy ra không có quả bóng màu đỏ nào”, tức là cả 9 quả bóng được lấy ra có màu trắng.
Mỗi cách lấy ra đồng thời 9 quả bóng màu trắng là một tổ hợp chập 9 của 10 phần tử.
Do đó . Suy ra .
Vậy .
Ví dụ 3. Chọn ngẫu nhiên hai số từ tập {1; 2; ...; 9}. Gọi H là biến cố: “Trong hai số được chọn có ít nhất một số chẵn”.
a) Mô tả không gian mẫu.
b) Biến cố là tập con nào của không gian mẫu?
c) Tính và .
Hướng dẫn giải
a) Không gian mẫu là tập tất cả các tập con có 2 phần tử của tập {1; 2; ...; 8; 9}.
b) Biến cố : “Cả hai số được chọn đều là số lẻ”. Khi đó là tập tất cả các tập con có 2 phần tử của tập số lẻ {1; 3; 5; 7; 9}.
c) Ta có , . Vậy .
Từ đó .
3. Bài tập về xác suất của biến cố đối
Bài 1. Có 15 bông hoa màu trắng và 15 bông hoa màu vàng. Người ta chọn ra đồng thời 10 bông hoa. Tính xác suất của biến cố “Trong 10 bông hoa được chọn ra có ít nhất một bông màu trắng”.
Bài 2. Gieo đồng thời ba con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:
a) “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”.
b) “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4”.
Bài 3. Cho ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2 và số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.
a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.
b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố là tập con nào của không gian mẫu?
c) Tính P(M) và .
Bài 4. Trong hộp có 3 bi xanh, 4 bi đỏ và 5 bi vàng có kích thước và khối lượng như nhau. Lấy ngẫu nhiên từ trong hộp 4 viên bi. Tính xác suất để trong 4 bi lấy ra:
a) Có ít nhất 1 bi xanh.
b) Có ít nhất 2 bi đỏ.
Bài 5. Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1; 2; 3; ...; 45, chẳng hạn bạn An chọn bộ số {5; 13; 20; 31; 32; 35}.
Sau đó, người quản trò bốc ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1; 2; 3; ...; 45. Bộ 6 số ghi trên 6 quả bóng đó được gọi là bộ số trúng thưởng.
Nếu bộ số của người chơi trùng với bộ số trúng thưởng thì người chơi trúng giải độc đắc; nếu trùng với 5 số của bộ số trúng thưởng thì người chơi trúng giải nhất.
Hãy tính xác suất trúng giải độc đắc, giải nhất của bạn An khi chọn bộ số {5; 13; 20; 31; 32; 35}.
Xem thêm các dạng bài tập Toán lớp 10 sách mới hay, chi tiết khác:
Để học tốt lớp 10 các môn học sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều