Giải Toán 12 trang 75 Tập 2 Cánh diều

Với Giải Toán 12 trang 75 Tập 2 trong Bài 2: Phương trình đường thẳng Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 75.

Hoạt động 9 trang 75 Toán 12 Tập 2: Cho hai mặt phẳng (P1) và (P2). Gọi n1=A1;B1;C1,  n2=A2;B2;C2 lần lượt là hai vectơ pháp tuyến của (P1), (P2); ∆1, ∆2 lần lượt là giá của hai vectơ n1,  n2 (Hình 33). So sánh:

a) cos ((P1), (P2)) và cos (∆1, ∆2);

b) cos (∆1, ∆2) và cosn1,n2.

Hoạt động 9 trang 75 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

a) Vì ∆1, ∆2 lần lượt là giá của hai vectơ n1,  n2 lần lượt là hai vectơ pháp tuyến của (P1), (P2) nên ∆1 ⊥ (P1) và ∆2 ⊥ (P2).

Khi đó, ((P1), (P2)) = (∆1, ∆2). Suy ra cos ((P1), (P2)) = cos (∆1, ∆2).

b) Vì ∆1, ∆2 lần lượt là giá của hai vectơ n1,  n2 nên hai vectơ n1,  n2  lần lượt là vectơ chỉ phương của các đường thẳng ∆1, ∆2. Do đó cos (∆1, ∆2) = cosn1,n2

Luyện tập 9 trang 75 Toán 12 Tập 2: Cho mặt phẳng (P) có vectơ pháp tuyến n=A;B;C. Tính côsin của góc giữa mặt phẳng (P) và các mặt phẳng tọa độ.

Lời giải:

Các vectơ i=1;0;0,j=0;1;0 và k=0;0;1 lần lượt là vectơ pháp tuyến của các mặt phẳng tọa độ (Oyz), (Ozx) và (Oxy).

Ta có:

Luyện tập 9 trang 75 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác