Giải Toán 12 trang 73 Tập 2 Cánh diều

Với Giải Toán 12 trang 73 Tập 2 trong Bài 2: Phương trình đường thẳng Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 73.

Hoạt động 7 trang 73 Toán 12 Tập 2: Cho mặt phẳng (P) có vectơ pháp tuyến là n, đường thẳng ∆ có vectơ chỉ phương là u và đường thẳng ∆ cắt mặt phẳng (P) tại I. Gọi ∆' là hình chiếu của ∆ trên mặt phẳng (P) (Hình 29)

Hoạt động 7 trang 73 Toán 12 Cánh diều Tập 2 | Giải Toán 12

a) Hãy xác định góc giữa đường thẳng ∆ và mặt phẳng (P).

Ta kí hiệu góc đó là (∆, (P)).

b) So sánh sin (∆, (P)) và cosu,n

Lời giải:

a) Vì ∆' là hình chiếu của ∆ trên mặt phẳng (P) nên góc giữa đường thẳng ∆ và mặt phẳng (P) bằng góc giữa đường thẳng ∆ và đường thẳng ∆'. Ta có (∆, (P)) = (∆, ∆').

b) Ta có sin (∆, (P)) = sin (∆, ∆') = cosu,n

Luyện tập 7 trang 73 Toán 12 Tập 2: Cho mặt phẳng (P) có vectơ pháp tuyến n=A;B;C. Tính sin của góc giữa mặt phẳng (P) và các trục tọa độ.

Lời giải:

Mặt phẳng (P) có vectơ pháp tuyến n=A;B;C.

Các trục tọa độ Ox, Oy và Oz có vectơ chỉ phương lần lượt là i=1;0;0 ,j=0;1;0k=0;0;1.

Ta có:

sin (Ox, (P)) = 1A+0B+0C12+02+02A2+B2+C2=AA2+B2+C2 ;

sin (Oy, (P)) = 0A+1B+0C02+12+02A2+B2+C2=BA2+B2+C2;

sin (Oz, (P)) = 0A+0B+1C02+02+12A2+B2+C2=CA2+B2+C2

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác