Bài 8 trang 96 Toán 10 Tập 2 - Kết nối tri thức

Bài 8 trang 96 Toán 10 Tập 2: a) Biểu diễn miền nghiệm D của hệ bất phương trình bậc nhất hai ẩn sau:  

x+y62xy2x0y0.

b) Từ kết quả câu a, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y trên miền D.

Lời giải:

a) Biểu diễn miền nghiệm D của hệ bất phương trình bậc nhất hai ẩn sau: x+y62xy2x0y0  

+) Vẽ đường thẳng x + y = 6 trên mặt phẳng Oxy, lấy điểm O(0; 0), ta thấy 0 + 0 < 6 nên miền nghiệm của bất phương trình x + y ≤ 6 là nửa mặt phẳng có bờ là đường thẳng x + y = 6 chứa điểm O(0; 0) kể cả biên. 

+) Vẽ đường thẳng 2x – y = 2 trên mặt phẳng Oxy, lấy điểm O(0; 0), ta thấy 2 . 0 – 0 ≤ 2 nên miền nghiệm của bất phương trình 2x – 2 ≤ 2 là nửa mặt phẳng có bờ là đường thẳng 2x – y = 2 chứa điểm O(0; 0) kể cả biên. 

Bài 8 trang 96 Toán 10 Tập 2 | Kết nối tri thức Giải Toán 10

Miền nghiệm của hệ x+y62xy2x0y0như hình trên. 

b) Từ kết quả câu a, ta thấy miền nghiệm của hệ bất phương trình là miền tứ giác OABC kể cả các cạnh của tứ giác. Tọa độ của các đỉnh của tứ giác OABC là: O(0; 0), A(1; 0),B83;103 , C(0; 6). 

Ta có: F(x; y) = 2x + 3y. 

F(0; 0) = 0; F(1; 0) = 2; ; F(0; 6) = 18. 

Vậy giá trị lớn nhất của F(x; y) = 2x + 3y trên miền D là 18. Giá trị nhỏ nhất của F(x; y) = 2x + 3y trên miền D là 0. 

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác