Bài 15 trang 96 Toán 10 Tập 2 - Kết nối tri thức

Bài 15 trang 96 Toán 10 Tập 2: Trong mặt phẳng tọa độ, cho tam giác ABC có ba đỉnh A(– 1; 3), B(1; 2), C(4; – 2).

a) Viết phương trình đường thẳng BC.

b) Tính diện tích tam giác ABC.

c) Viết phương trình đường tròn có tâm A và tiếp xúc với đường thẳng BC.

Lời giải:

a) Ta có: BC=41;  22=3;4

Do đó đường thẳng BC có 1 vectơ chỉ phương là uBC=3;  4

Suy ra đường thẳng BC có 1 vectơ pháp tuyến là nBC=4;  3

Phương trình đường thẳng BC là 4.(x – 1) + 3(y – 2) = 0 hay 4x + 3y – 10 = 0. 

b) Ta có: BC=32+42=5

Khoảng cách từ A đến đường thẳng BC là 

d(A, BC) = 41+331042+32=55=1

Độ dài đường cao kẻ từ A của tam giác ABC chính bằng khoảng cách từ A đến đường thẳng BC. Do đó, diện tích tam giác ABC là

SABC = 12dA,  BCBC=12.1.5=52

c) Đường tròn có tâm A và tiếp xúc với đường thẳng BC có bán kính bằng khoảng cách từ A đến đường thẳng BC, do đó R = d(A, BC) = 1. 

Vậy phương trình đường tròn là (x + 1)2 + (y – 3)2 = 1. 

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác