Toán 12 trang 46 (sách mới) | Chân trời sáng tạo, Kết nối tri thức, Cánh diều



Lời giải Toán 12 trang 46 sách mới Chân trời sáng tạo, Kết nối tri thức, Cánh diều hay, chi tiết sẽ giúp học sinh lớp 12 biết cách làm bài tập Toán 12 trang 46.

- Toán lớp 12 trang 46 Tập 1 (sách mới):

- Toán lớp 12 trang 46 Tập 2 (sách mới):




Lưu trữ: Giải Toán 12 trang 46 (sách cũ)

Bài 8 (trang 46 SGK Giải tích 12): Cho hàm số: f(x) = x3 - 3mx2 + 3(2m - 1)x + 1 (m là tham số).

a) Xác định m để hàm số đồng biến trên tập xác định.

b) Với giá trị nào của tham số m thì hàm số có một cực đại và một cực tiểu?

c) Xác định m để f"(x) > 6x.

Lời giải:

a) TXĐ: D = R

f'(x) = 3x2 - 6mx + 3(2m - 1)

Hàm số đồng biến trên R

⇔ f’(x) > 0 với ∀ x ∈ R.

⇔ Δf'(x) = (3m)2 - 3.3(2m-1) ≤ 0

⇔ 9m2 – 18m + 9 ≤ 0

⇔ 9.(m – 1)2 ≤ 0

⇔ (m – 1)2 = 0

⇔ m = 1.

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình f’(x) = 0 có 2 nghiệm phân biệt.

⇔ Δf'(x) = 9(m - 1)2 > 0

⇔ m ≠ 1

c) Ta có: f"(x) = 6x - 6m

f"(x) > 6x ⇔ 6x - 6m > 6x

⇔ - 6m > 0 ⇔ m < 0

Tham khảo lời giải các bài tập Toán 12 bài ôn tập khác:

Các bài giải Toán 12 Giải tích Tập 1 khác:


on-tap-chuong-1-giai-tich-12.jsp


Giải bài tập lớp 12 sách mới các môn học