Giải bài 7 trang 45 sgk Giải tích 12



Bài 7 (trang 45-46 SGK Giải tích 12): a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

y = x3 + 3x2 + 1

b) Dựa vào đồ thị (C), biện luận số nghiệm phương trình sau theo m:

x3 + 3x2 + 1 = m2.

c) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C).

Lời giải:

a) Khảo sát hàm số y = x3 + 3x2 + 1

- TXĐ: D = ℝ

- Sự biến thiên:

+ Chiều biến thiên:

y' = 3x2 + 6x = 3x(x + 2)

y' = 0 ⇔ x = 0 hoặc x = -2

+ Giới hạn: Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên:

Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận:

Hàm số đồng biến trên các khoảng (-∞; -2) và (0; +∞).

Hàm số nghịch biến trên khoảng (-2; 0).

Hàm số đạt cực tiểu tại x = 0 ; yCT = 1.

Hàm số đạt cực đại tại x = -2 ; y = 5.

- Đồ thị:

+ Giao với Oy: (0; 1).

+ Đồ thị (C) đi qua điểm (–3; 1), (1; 5).

Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

b) Số nghiệm của phương trình x3 + 3x2 + 1 = m2 bằng số giao điểm của đồ thị (C) và đường thẳng y = m2.

Từ đồ thị ta có:

+ Đường thẳng cắt đồ thị tại 1 điểm khi và chỉ khi :

Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Khi đó phương trình có 1 nghiệm.

+ Để đường thẳng cắt đồ thị tại 2 điểm phân biệt khi và chỉ khi:

Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Khi đó phương trình có hai nghiệm phân biệt.

+ Với Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 ⇔ 2 < m < 10.

Khi đó đường thẳng y = m2 cắt đồ thị hàm số tại 3 điểm

Do đó phương trình có ba nghiệm phân biệt.

c) Điểm cực đại A(-2; 5) và điểm cực tiểu B(0; 1).

Vtcp của đường thẳng AB: u=AB = (0 + 2; 1 - 5) = (2; 4) = 2(1; -2)

Suy ra VTPT của AB là Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Đường thẳng AB đi qua A(-2 ; 5) và có VTPT Giải bài 7 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 nên có phương trình:

2(x + 2) + 1( y – 5) = 0 hay 2x + y - 1 = 0

Vậy phương trình đường thẳng đi qua điểm cực tiểu và điểm cực đại của đồ thị (C) là: 2x + y – 1 = 0.

Tham khảo lời giải các bài tập Toán 12 bài ôn tập khác:

Các bài giải Toán 12 Giải tích Tập 1 khác:


on-tap-chuong-1-giai-tich-12.jsp


Giải bài tập lớp 12 sách mới các môn học