Bài 37 trang 162 SBT Toán 8 Tập 1



Bài 4: Diện tích hình thang

Bài 37 trang 162 SBT Toán 8 Tập 1: Chứng minh rằng mọi đường thẳng đi qua trung điểm của đường trung bình của hình thang và cắt hai dây hình thang sẽ chia hình thang đó thành hai hình thang có diện tích bằng nhau.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình thang ABCD có AB // CD, đường trung bình là MN. 

Gọi I là trung điểm của MN, đường thẳng bất kỳ đi qua I cắt AB tại P và CD tại Q.

Ta có hai hình thang APQD và BPQC có cùng đường cao.

MI là đường trung bình của hình thang APQD.

Suy ra: MI = AP+QD 2 .

Vì IN là đường trung bình của hình thang BPQC.

Suy ra: IN= BP+QC 2 .

Mà SAPQD = (AP+QD).AH 2 =MI.AH (1)

SBPQC = (BP+QC).AH 2 = IN.AH (2).

Và IM = IN (giả thiết) (3)

Từ (1), (2) và (3) suy ra: SAPQD = SBPQC, các giá trị này không phụ thuộc vào vị trí của P và Q.

Vậy mọi đường thẳng đi qua trung điểm của đường trung bình của hình thang và cắt hai dây hình thang sẽ chia hình thang đó thành hai hình thang có diện tích bằng nhau.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-4-dien-tich-hinh-thang.jsp


Giải bài tập lớp 8 sách mới các môn học