Bài 121 trang 95 SBT Toán 8 Tập 1



Bài 9: Hình chữ nhật

Video Bài 121 trang 95 Sách bài tập Toán 8 Tập 1 - Cô Nguyễn Anh (Giáo viên VietJack)

Bài 121 trang 95 SBT Toán 8 Tập 1: Cho tam giác nhọn ABC, các đường cao BD, CE. Gọi H, K theo thứ tự là chân đường vuông góc kẻ từ B, C đến đường thẳng DE. Chứng minh rằng EH = DK.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Ta có: BH ⊥ DE  và CK ⊥ DE 

⇒ BH // CK hay tứ giác BHKC là hình thang.

Gọi M là trung điểm của BC, I là trung điểm của DE.

* Trong tam giác BDC vuông tại D có DM là trung tuyến ứng với cạnh huyền BC.

⇒ DM = 1 2 BC (tính chất tam giác vuông)

* Trong tam giác BEC vuông tại E có EM là đường trung tuyến ứng với cạnh huyền BC.

⇒ EM = 1 2 BC (tính chất tam giác vuông)

Suy ra: DM = EM  (= 1 2 BC ) nên ΔMDE cân tại M.

MI là đường trung tuyến nên MI là đường cao ⇒ MI ⊥ DE

Suy ra: MI // BH // CK.

Lại có: BM = MC.

Suy ra: HI = IK (tính chất đường trung bình hình thang)

⇒ HE + EI = ID + DK

Mà EI = ID nên EH = DK.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-9-hinh-chu-nhat.jsp


Giải bài tập lớp 8 sách mới các môn học