Bài 115 trang 94 SBT Toán 8 Tập 1



Bài 9: Hình chữ nhật

Video Bài 115 trang 94 Sách bài tập Toán 8 Tập 1 - Cô Nguyễn Anh (Giáo viên VietJack)

Bài 115 trang 94 SBT Toán 8 Tập 1: Cho tam giác ABC cân tại A, các đường trung tuyến BM, CN cắt nhau tại G. Gọi D là điểm đối xứng với G qua M, gọi E là điểm đối xứng với G qua N. Tứ giác BEDC là hình gì? Vì sao?

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G

Suy ra: G là trọng tâm của ΔABC .

⇒ GB = 2GM (tính chất đường trung tuyến)

GC = 2GN (tính chất đường trung tuyến)

Lại có, điểm D đối xứng với điểm G qua điểm M

⇒ MG = MD hay GD = 2GM

Suy ra: GB = GD (= 2GM) (l)

Điểm E đối xứng với điểm G qua điểm N

⇒ NG = NE hay GE = 2GN

Suy ra: GC = GE ( = 2GN) (2)

Từ (1) và (2) suy ra tứ giác BCDE là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét ΔBCM và ΔCBN, có: 

BC cạnh chung

BCM ^ = CBN ^ (tính chất tam giác cân)

CM = BN (vì AB = AC)

Suy ra: ΔBCM = ΔCBN (c.g.c).

MBC ^ = NCB ^

⇒ ΔGBC cân tại G 

⇒ GB = GC 

⇒ BD = CE

Hình bình hành BCDE có hai đường chéo bằng nhau nên nó là hình chữ nhật.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-9-hinh-chu-nhat.jsp


Giải bài tập lớp 8 sách mới các môn học