Bài 118 trang 20 SBT Toán 6 Tập 1



Bài 10: Tính chất chia hết của một tổng

Bài 118 trang 20 SBT Toán 6 Tập 1: Chứng tỏ rằng:

a. Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.

b. Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

Lời giải:

a. Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh.

Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)

Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2

Ta có: 2k ⋮ 2; 2 ⋮ 2

Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2

Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2

b. Gọi ba số tự nhiên liên tiếp là a, a + 1, a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 (k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3

(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3

(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)

Vậy trong ba số tự nhiên liên tiếp, có một số chia hết cho 3

Các bài giải sách bài tập Toán 6 Tập 1 (SBT Toán 6 Tập 1) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:


bai-10-tinh-chat-chia-het-cua-mot-tong.jsp


Giải bài tập lớp 6 sách mới các môn học