(Công thức lãi kép) Một khoản tiền A đồng (gọi là vốn) được gửi tiết kiệm có kì hạn
Vận dụng trang 31 Chuyên đề Toán 10: (Công thức lãi kép) Một khoản tiền A đồng (gọi là vốn) được gửi tiết kiệm có kì hạn ở một ngân hàng theo thể thức lãi kép (tiền lãi sau mỗi kì hạn nếu không rút ra thì được cộng vào vốn của kì kế tiếp). Giả sử lãi suất theo kì là r không đổi qua các kì hạn, người gửi không rút tiền vốn và lãi trong suốt các kì hạn đề cập sau đây. Gọi Tn là tổng số tiền vốn và lãi của người gửi sau kì hạn thứ n (n∈ℕ*)
a) Tính T1, T2, T3.
b) Từ đó, dự đoán công thức tính Tn và chứng minh công thức đó bằng phương pháp quy nạp toán học.
Lời giải:
a)
– Tổng số tiền (cả vốn lẫn lãi) T1 nhận được sau kì thứ 1 là:
T1 = A + Ar = A(1 + r).
– Tổng số tiền (cả vốn lẫn lãi) T2 nhận được sau kì thứ 2 là:
T2 = A(1 + r) + A(1 + r)r = A(1 + r)(1 + r) = A(1 + r)2.
– Tổng số tiền (cả vốn lẫn lãi) T3 nhận được sau kì thứ 3 là:
T3 = A(1 + r)2 + A(1 + r)2r = A(1 + r)3.
b) Từ câu a) ta có thể dự đoán Tn = A(1 + r)n.
Ta chứng minh bằng quy nạp toán học.
Bước 1. Với n = 1 ta có T1 = A(1 + r) = A(1 + r)1.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, tức là ta có: Tk = A(1 + r)k.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: Tk + 1 = A(1 + r)k + 1.
Thật vậy,
Tổng số tiền (cả vốn lẫn lãi) Tk + 1 nhận được sau kì thứ (k + 1) là:
Tk + 1 = A(1 + r)k + A(1 + r)k.r = A(1 + r)k(1 + r) = A(1 + r)k + 1.
Vậy khẳng định đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.
Vậy Tn = A(1 + r)n với mọi số tự nhiên n ≥ 1.
Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 29 Chuyên đề Toán 10: Chứng minh rằng đẳng thức sau đúng với mọi ....
Thực hành 3 trang 31 Chuyên đề Toán 10: Chứng minh rằng n3 + 2n chia hết cho 3 với mọi ....
Thực hành 4 trang 31 Chuyên đề Toán 10: Chứng minh rằng đẳng thức sau đúng với mọi ....
Bài 1 trang 32 Chuyên đề Toán 10: Chứng minh các đẳng thức sau đúng với mọi ....
Bài 2 trang 32 Chuyên đề Toán 10: Chứng minh rằng, với mọi , ta có: ....
Bài 3 trang 32 Chuyên đề Toán 10: Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1 + nx với mọi ....
Bài 4 trang 32 Chuyên đề Toán 10: Cho a, b ≥ 0. Chứng minh rằng bất đẳng thức sau đúng với mọi ....
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều