Chứng minh rằng trong mặt phẳng, n đường thẳng khác nhau cùng đi qua một điểm chia mặt phẳng thành 2n phần

Thực hành 5 trang 31 Chuyên đề Toán 10: Chứng minh rằng trong mặt phẳng, n đường thẳng khác nhau cùng đi qua một điểm chia mặt phẳng thành 2n phần (n*)

Lời giải:

Bước 1. Với n = 1, ta có rõ ràng một đường thẳng chia mặt phẳng thành 2 phần.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k đường thẳng khác nhau đi qua một điểm chia mặt phẳng ra thành 2k phần.

Ta cần chứng minh khẳng định đúng với n = k + 1, nghĩa là cần chứng minh: (k + 1) đường thẳng khác nhau đi qua một điểm chia mặt phẳng ra thành 2(k + 1) phần.

Sử dụng giả thiết quy nạp, ta có:

Nếu dựng đường thẳng đi qua điểm đã cho và không trùng với đường thẳng nào trong số những đường thẳng còn lại, thì ta nhận thêm 2 phần của mặt phẳng. Như vậy tổng số phần mặt phẳng là của 2k cộng thêm 2 , nghĩa là 2(k + 1).

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học