Chứng minh rằng, với mọi n thuộc N sao, ta có 5^2n -1 chia hết cho 24

Bài 2 trang 32 Chuyên đề Toán 10: Chứng minh rằng, với mọi n*, ta có:

a) 52n – 1 chia hết cho 24;

b) n3 + 5n chia hết cho 6.

Lời giải:

a) Bước 1. Với n = 1, ta có 52.1 – 1 = 24 ⁝ 24. Do đó khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: 52k – 1 ⁝ 24.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

52(k + 1) – 1 ⁝ 24.

Sử dụng giả thiết quy nạp, ta có:

52(k + 1) – 1 = 52k + 2 – 1 = 25 . 52k – 1 = 24 . 52k + (52k – 1)

Vì 24 . 52k và (52k – 1) đều chia hết cho 24 nên 24 . 52k + (52k – 1) ⁝ 24 hay 52(k + 1) – 1 ⁝ 24.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

b) Bước 1. Với n = 1, ta có 13 + 5 . 1 = 6 ⁝ 6. Do đó khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k ≥ 1, nghĩa là có: k3 + 5k ⁝ 6.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

(k + 1)3 + 5(k + 1) ⁝ 6.

Sử dụng giả thiết quy nạp, ta có:

(k + 1)3 + 5(k + 1) = k3 + 3k2 + 3k + 1 + 5k + 5 = (k3 + 5k) + (3k2 + 3k) + 6

= (k3 + 5k) + 3k(k + 1) + 6.

Vì k và k + 1 là hai số tự nhiên liên tiếp nên có một số chia hết cho 2, do đó 3k(k + 1) ⁝ 6.

Do đó (k3 + 5k) và 3k(k + 1) đều chia hết cho 6, suy ra (k3 + 5k) + 3k(k + 1) + 6 ⁝ 6 hay (k + 1)3 + 5(k + 1) ⁝ 6.

Vậy khẳng định đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, khẳng định đúng với mọi số tự nhiên n ≥ 1.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học