Các dạng bài tập về phương trình bậc hai một ẩn lớp 9 (cực hay, có đáp án)



Bài viết Các dạng bài tập về phương trình bậc hai một ẩn lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Các dạng bài tập về phương trình bậc hai một ẩn.

Dạng 1.1: Giải phương trình: ax2 + bx + c = 0 (a ≠ 0)

Bước 1: Xác định các hệ số a; b; c (hoặc a; b'; c) của phương trình bậc hai ax2 + bx + c.

Bước 2: Tính Δ = b2 - 4ac (hoặc Δ' = b'2 - ac ).

+ TH1: Δ < 0, phương trình vô nghiệm.

+ TH2: Δ = 0, phương trình có nghiệm kép Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

+ TH3: Δ > 0, phương trình có hai nghiệm phân biệt Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Bước 3: Tìm nghiệm của phương trình (nếu có).

Bước 4: Kết luận.

Dạng 1.2: Kiểm tra một giá trị x0 có là nghiệm của phương trình: ax2 + bx + c = 0 (a ≠ 0) hay không.

Bước 1: Thay giá trị x0 vào vế trái của phương trình: ax0 + bx0 + c

Bước 2: Kết luận.Tính vế trái. Nếu kết quả bằng 0 thì x0 là một nghiệm của phương trình.

Bước 3: Kết luận.

Định lý Vi-ét: Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 (phân biệt hoặc trùng nhau) thì tổng các nghiệm Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án và tích các nghiệm Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Dạng 2.1: Tìm tham số m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 2.2: Tìm tham số và tìm nghiệm còn lại khi biết trước một nghiệm x0 của phương trình.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 2.3: Khi phương trình bậc hai có nghiệm, tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc vào tham số.

Bước 1: Tìm điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Tính m theo S và P.

Bước 4: Khử m và tìm ra hệ thức.

Bước 5: Kết luận.

Dạng 2.4. Áp dụng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình bậc hai

Cho phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

+) Nếu a + b + c = 0 thì phương trình có nghiệm x1 = 1 và x2 = Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án.

+) Nếu a - b + c = 0 thì phương trình có nghiệm x1 = -1 và x2 = Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án.

Dạng 2.5. Tìm hai số khi biết tổng và tích

Nếu hai số u và v có tổng u + v = S và tích u.v = P thì hai số đó là nghiệm của phương trình x2 - Sx + P = 0 .

Điều kiện để có u và v là S2 - 4P ≥ 0.

Dạng 3.1: Giải và biện luận phương trình theo tham số m

Bước 1: Xác định các hệ số a; b; c (hoặc a; b'; c).

Bước 2: Giải phương trình theo m:

+) Với giá trị của m mà a = 0, giải phương trình bậc nhất.

+) Với giá trị của m mà a ≠ 0, giải phương trình bậc hai: Tính Δ = b'2 - ac (hoặc Δ' = b2 - 4ac), xét các trường hợp của Δ chứa tham số và tìm nghiệm theo tham số.

Bước 3: Kết luận.

Biện luận phương trình:

- Phương trình có nghiệm khi:

+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.

+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm.

- Phương trình có một nghiệm khi:

+) Với giá trị của m mà a = 0, phương trình bậc nhất có nghiệm.

+) Với giá trị của m mà a ≠ 0, phương trình bậc hai có nghiệm kép.

- Phương trình có hai nghiệm phân biệt khi: Giá trị của m mà a ≠ 0, phương trình bậc hai có hai nghiệm phân biệt.

Dạng 3.2: Xác định dấu các nghiệm của phương trình

Bước 1: Xác định hệ số.

Bước 2: Tính Δ = b2 - 4ac (hoặc Δ' = b2 - 4ac) để kiểm tra phương trình có nghiệm hay không.

Bước 3: Trong trường hợp phương trình có nghiệm (Δ ≥ 0 hoặc Δ' ≥ 0), tính tổng S và tích P của hai nghiệm theo định lý Vi-ét để xét dấu các nghiệm của phương trình.

+) Phương trình có hai nghiệm cùng dấu: P > 0.

+) Phương trình có hai nghiệm dương: Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án.

+) Phương trình có hai nghiệm âm: Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án.

+) Phương trình có hai nghiệm trái dấu: P < 0.

Chú ý: Phương trình có hai nghiệm trái dấu chỉ cần xét P < 0 hoặc a.c < 0.

Bước 4: Kết luận.

Dạng 3.3: Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước

Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm

Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.

Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.

Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.

Bước 4: Đối chiếu điều kiện và kết luận.

Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0.

Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.

Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.

Bước 3: Kết luận.

Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung.

Bước 1: Tìm điều kiện để các phương trình có nghiệm.

Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình trình hai ẩn (x0 và tham số) và giải hệ phương trình.

Bước 3: So sánh với điều kiện và kết luận.

Ví dụ 1: Tập nghiệm của phương trình x2 + 3x - 1 = 0 là:

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn C

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 2: Giá trị nào sau đây là nghiệm của phương trình 3x2 + 7x + 2 = 0

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn B

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 3: Phương trình x2 - 2mx + m = 0 với m = 1 có tập nghiệm là:

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn C

Cách giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 4: Cho phương trình bậc hai (m - 1)x2 - 2mx + m + 1 = 0 (m là tham số). Các giá trị nguyên của m để phương trình có nghiệm nguyên là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 5: Phương trình x2 + (2m + 1)x + 3m = 0 (với m là tham số) có hai nghiệm phân biệt, trong đó có một nghiệm là x1 = 3, nghiệm còn lại là x2 bằng:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn D

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 6: Tìm hệ thức liên hệ giữa hai nghiệm của phương trình x2 - (m + 3)x + 2m - 5 = 0 không phụ thuộc vào m.

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn A

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 7: Cho phương trình x2 - 2x - 8 = 0 có hai nghiệm x1 và x2. Phương trình bậc hai một ẩn có hai nghiệm là y1 = x1 - 3 và y2 = x2 - 3 là:

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Lời giải

Chọn C

Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn cực hay, có đáp án

Ví dụ 8: Giải phương trình x2 - 2x + 1 - m2 = 0 với m là tham số, m ≠ 0.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 9: Cho phương trình x2 + √7x + 1 = 0. Khẳng định nào sau đây là đúng?

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 10: Số các giá trị nguyên của tham số m để phương trình x2 - 2x + m = 0 có hai nghiệm phân biệt x1; x2 sao cho x12.x22 ≤ 4 là:.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 11: Phương trình bậc hai mx2 + (2m + 1)x + 3 = 0 có một nghiệm là x = -1. Giá trị của m và nghiệm còn lại là:

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải

Chọn A

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 12: Cho hai phương trình bậc hai x2 + 2x + m = 0 (1) và x2 + mx + 2 = 0 (2) (với m là tham số). Tìm m để hai phương trình có ít nhất một nghiệm chung.

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Lời giải

Chọn B

Cách giải phương trình bậc hai chứa tham số cực hay, có đáp án

Ví dụ 13: Cho phương trình x2 + mx - 6m2 = 0 với m là tham số. Chọn khẳng định sai:

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án

Lời giải

Chọn A

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án

Ví dụ 14: Cho phương trình mx2 - 2(m + 1)x + m + 2 = 0. Chọn kết luận đúng.

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án

Lời giải

Chọn B

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án

Ví dụ 15: Khi phương trình x2 + (m + 1)x - m = 0 có nghiệm kép, giá trị của nghiệm kép là:

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án

Lời giải

Chọn C

Cách giải và biện luận phương trình bậc hai theo tham số m cực hay, có đáp án

Ví dụ 16: Cho phương trình x2 - 2x + 1 - m2 = 0 với m là tham số. Khẳng định nào sau đây là đúng?

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án

Lời giải

Chọn D

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án

Ví dụ 17: Giá trị nguyên nhỏ nhất của tham số m để phương trình x2 - 2(m + 7)x + m2 - 4 = 0 có hai nghiệm trái dấu là:

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án

Lời giải

Chọn C

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án

Ví dụ 18: Phương trình 2x2 + (2m - 1)x + m - 1 = 0 có hai nghiệm bằng nhau về giá trị tuyệt đối nhưng trái dấu nhau khi:

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án

Lời giải

Chọn C

Cách xét dấu các nghiệm của phương trình bậc hai cực hay, có đáp án

Ví dụ 19: Tìm m để phương trình x2 - 2(m - 2)x - 6m = 0 có nghiệm x1; x2 sao cho biểu thức x12 + x22 đạt giá trị nhỏ nhất.

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án

Lời giải

Chọn D

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án

Ví dụ 20:Tìm m để mx2 - 2(m + 1)x + m + 3 = 0 là phương trình bậc hai nhận x = -2 là nghiệm.

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án

Lời giải

Chọn A

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án

Ví dụ 21: Tìm m để hai phương trình x2 + x + m - 2 = 0 (1) và x2 + (m - 2)x + 1 = 0 (2) có nghiệm chung.

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án

Lời giải

Chọn D

Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:


chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp


Giải bài tập lớp 9 sách mới các môn học