Cách tìm giới hạn hàm số dạng 0/0, dạng vô cùng trên vô cùng cực hay
Bài viết Cách tìm giới hạn hàm số dạng 0/0, dạng vô cùng trên vô cùng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm giới hạn hàm số dạng 0/0, dạng vô cùng trên vô cùng.
Tìm trong đó f(x0) = g(x0) = 0
Dạng này ta gọi là dạng vô định 0/0
Để khử dạng vô định này ta sử dụng định lí Bơzu cho đa thức:
Định lí: Nếu đa thức f(x) có nghiệm x = x0 thì ta có :f(x) = (x-x0)f1(x)
* Nếu f(x) và g(x) là các đa thức thì ta phân tích
f(x) = (x-x0)f1(x)và : g(x) = (x-x0)g1(x).
Khi đó , nếu giới hạn này có dạng 0/0 thì ta tiếp tục quá trình như trên.
Bài 1: Tìm các giới hạn sau:
Hướng dẫn:
Ta có:
Bài 2: Tìm giới hạn sau:
Hướng dẫn:
Ta có:
Bài 3:
Hướng dẫn:
Đặt t = x - 1 ta có:
Bài 4:
Hướng dẫn:
Ta có:
Nên ta có B = 1 + 1 + 1 = 3
Bài 5:
Hướng dẫn:
Ta có:
Vậy A = -2/3
Bài 6:
Hướng dẫn:
Ta có:
Mà
Bài 1: bằng số nào sau đây?
Lời giải:
Đáp án: A
Đáp án là A
Bài 2: bằng
A. 5 B. 1 C. 5/3 D. -5/3
Lời giải:
Đáp án: C
Đáp án là C
Bài 3: bằng:
A. 0 B. 4/9 C. 3/5 D. +∞
Lời giải:
Đáp án: C
Chia cả tử và mẫu của phân thức cho x4 ta có
Đáp án C
Bài 4: bằng:
A. -2
B. -1
C. 1
D. 2
Lời giải:
Đáp án: B
Đáp án là B
Bài 5: bằng:
A. -∞ B. 3/5 C. -2/5 D. 0
Lời giải:
Đáp án: D
Đáp án là D
Bài 6: bằng:
Lời giải:
Đáp án: D
Đáp án là D
Bài 7: bằng:
A. -3
B. -1
C. 0
D. 1
Lời giải:
Đáp án: D
Đáp án là D
Bài 8: bằng:
A. -2/3 B. -1/3 C. 0 D. 1/3
Lời giải:
Đáp án: B
Đáp án là B
Bài 9: bằng:
A. +∞
B. 4
C. 0
D. -∞
Lời giải:
Đáp án: C
Đáp án C
Bài 10: bằng:
A. 0 B. -1 C. -1/2 D. -∞
Lời giải:
Đáp án: A
Đáp án A
Bài 11: bằng:
A. 1/4 B. 1/6 C. 1/8 D. -1/8
Lời giải:
Đáp án: C
Đáp án C
Bài 12: bằng:
A. +∞ B. 1/8 C. -9/8 D. -∞
Lời giải:
Đáp án: D
Tử số có giới hạn là -1, mẫu số có giới hạn là 0 và khi x < -2 thì x2 + 2x > 0. Do đó
Đáp án D
Bài 13: bằng:
A. 0 B. -1/6 C. -1/2 D. -∞
Lời giải:
Đáp án: A
Đáp án A
Bài 14: bằng:
A. +∞ B. 2/5 C. -7 D. -∞
Lời giải:
Đáp án: C
Đáp án C
Bài 15: bằng:
A. 2/3 B. 1/2 C. -2/3 D. -1/2
Lời giải:
Đáp án: C
Đáp án C
Bài 1. Tính giới hạn: L = .
Bài 2. Tính giới hạn: L = .
Bài 3. Tính giới hạn: L = .
Bài 4. Tính giới hạn: L = .
Bài 5. Tính giới hạn:
a) .
b) .
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Tìm giới hạn của hàm số bằng định nghĩa
- Tìm giới hạn hàm số dạng vô định
- Dạng 3: Tìm giới hạn hàm số dạng 0 nhân vô cùng
- Dạng 4: Tìm giới hạn hàm số dạng vô cùng trừ vô cùng, vô cùng trên vô cùng
- 60 bài tập trắc nghiệm Giới hạn của hàm số có đáp án (phần 1)
- 60 bài tập trắc nghiệm Giới hạn của hàm số có đáp án (phần 2)
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều