Giải Toán 12 trang 63 Tập 2 Cánh diều

Với Giải Toán 12 trang 63 Tập 2 trong Bài 1: Phương trình mặt phẳng Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 63.

Bài 1 trang 63 Toán 12 Tập 2: Phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

A. – x2 + 2y + 3z + 4 = 0.

B. 2x – y2 + z + 5 = 0.

C. x + y – z2 + 6 = 0.

D. 3x – 4y – 5z + 1 = 0.

Lời giải:

Đáp án đúng là: D

Phương trình tổng quát của mặt phẳng có dạng Ax + By + Cz + D = 0, trong đó A, B, C, D không đồng thời bằng 0. Do đó trong các đáp án đã cho, ta thấy chỉ có phương trình ở đáp án D: 3x – 4y – 5z + 1 = 0 là phương trình tổng quát của mặt phẳng.

Bài 2 trang 63 Toán 12 Tập 2: Mặt phẳng x + 2y – 3z + 4 = 0 có một vectơ pháp tuyến là:

Bài 2 trang 63 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

Đáp án đúng là: C

Mặt phẳng x + 2y – 3z + 4 = 0 có một vectơ pháp tuyến là: n=1;2;3

Bài 3 trang 63 Toán 12 Tập 2: Lập phương trình mặt phẳng (P) đi qua điểm I(3; – 4; 5) và nhận n=2;7;1 làm vectơ pháp tuyến.

Lời giải:

Phương trình mặt phẳng (P) đi qua điểm I(3; – 4; 5) và nhận n=2;7;1 làm vectơ pháp tuyến là:

2(x – 3) + 7(y + 4) – 1(z – 5) = 0 ⇔ 2x + 7y – z + 27 = 0.

Bài 4 trang 63 Toán 12 Tập 2: Lập phương trình mặt phẳng (P) đi qua điểm K(– 1; 2; 3) và nhận hai vectơ u=1;2;3,v=4;5;6 làm cặp vectơ chỉ phương.

Lời giải:

Xét vectơ n=u,v=2356;3164;1245, tức là n=3;6;3.

Khi đó, n là vectơ pháp tuyến của mặt phẳng (P).

Vậy mặt phẳng (P) có phương trình là:

– 3(x + 1) + 6(y – 2) – 3(z – 3) = 0 ⇔ x – 2y + z + 2 = 0.

Bài 5 trang 63 Toán 12 Tập 2: Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:

a) (P) đi qua điểm I(3; – 4; 1) và vuông góc với trục Ox;

b) (P) đi qua điểm K(– 2; 4; – 1) và song song với mặt phẳng (Ozx);

c) (P) đi qua điểm K(– 2; 4; – 1) và song song với mặt phẳng (Q): 3x + 7y + 10z + 1 = 0.

Lời giải:

a) Vì mặt phẳng (P) vuông góc với trục Ox nên (P) nhận vectơ i=1;0;0 làm vectơ pháp tuyến.

Vậy phương trình mặt phẳng (P) là:

1(x – 3) + 0(y + 4) + 0(z – 1) = 0 ⇔ x – 3 = 0.

b) Ta có (Ozx): y = 0. Một vectơ pháp tuyến của mặt phẳng (Ozx) là j=0;1;0.

Vì mặt phẳng (P) song song với mặt phẳng (Ozx) nên (P) nhận j=0;1;0 làm vectơ pháp tuyến.

Vậy phương trình mặt phẳng (P) là:

0(x + 2) + 1(y – 4) + 0(z + 1) = 0 ⇔ y – 4 = 0.

c) (Q): 3x + 7y + 10z + 1 = 0. Một vectơ pháp tuyến của mặt phẳng (Q) là n=3;7;10.

Vì mặt phẳng (P) song song với mặt phẳng (Q) nên (P) nhận n=3;7;10 làm vectơ pháp tuyến.

Vậy phương trình mặt phẳng (P) là:

3(x + 2) + 7(y – 4) + 10(z + 1) = 0 ⇔ 3x + 7y + 10z – 12 = 0. 

Bài 6 trang 63 Toán 12 Tập 2: Lập phương trình mặt phẳng (P) đi qua ba điểm A(1; 1; 1), B(0; 4; 0), C(2; 2; 0).

Lời giải:

Ta có: AB=1;3;1,  AC=1;1;1.

Xét vectơ n=AB,AC=3111;1111;1311, tức là n=2;2;4.

Khi đó,n là vectơ pháp tuyến của mặt phẳng (P).

Vậy mặt phẳng (P) có phương trình là:

– 2(x – 1) – 2(y – 1) – 4(z – 1) = 0 ⇔ x + y + 2z – 4 = 0.

Bài 7 trang 63 Toán 12 Tập 2: Lập phương trình mặt phẳng theo đoạn chắn của mặt phẳng (P), biết (P) đi qua ba điểm A(5; 0; 0), B(0; 3; 0), C(0; 0; 6).

Lời giải:

Phương trình mặt phẳng (P) là: x5+y3+z6=1

Lời giải bài tập Toán 12 Bài 1: Phương trình mặt phẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác