Thực hành 1 trang 67 Toán 11 Tập 2 Chân trời sáng tạo

Thực hành 1 trang 67 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng:

a) (SAC) ⊥ (ABCD) .

b) (SAC) ⊥ (SBD).

Lời giải:

Thực hành 1 trang 67 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Gọi O = AC BD

• ΔSAC cân tại S nên SO ⊥ AC (1)

• ΔSBD cân tại S ⇒ SO ⊥ BD (2)

Từ (1) và (2) suy ra SO ⊥ (ABCD)

Ta có:

SO ABCDSO SAC     SAC  ABCD 

b) Vì ABCD là hình vuông nên AC ⊥ BD.

Mà SO ⊥ AC nên AC ⊥ (SBD).

Ta lại có: AC SAC

Do đó (SAC) ⊥ (SBD).

Lời giải bài tập Toán 11 Bài 3: Hai mặt phẳng vuông góc hay, chi tiết khác:

Các bài học để học tốt Toán 11 Bài 3: Hai mặt phẳng vuông góc:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác