Bài 1 trang 73 Toán 11 Tập 2 Chân trời sáng tạo

Bài 1 trang 73 Toán 11 Tập 2: Cho hình chóp S.ABC có đáy là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với (ABC).

a) Chứng minh rằng (SBC) ⊥ (SAC).

b) Gọi I là trung điểm của SC. Chứng minh rằng (ABI) ⊥ (SAC).

Lời giải:

Bài 1 trang 73 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Ta có (SAC) ⊥ (ABC) ⇒ AC ⊥ (ABC) ⇒ AC ⊥ BC

Mà (SAC) ∩ (ABC) = AC nên BC ⊥ (SAC)

Do đó (SBC) ⊥ (SAC).

b) Ta có: BC ⊥ (SAC) nên BC ⊥ AI (AI ⊂ (SAC)) (1)

Tam giác SAC đều có I là trung điểm của SC nên AI ⊥ SC (2)

Từ (1) và (2) suy ra AI ⊥ (SBC)

Mà AI ⊂ (ABI) nên (ABI) ⊥ (SAC)

Lời giải bài tập Toán 11 Bài 3: Hai mặt phẳng vuông góc hay, chi tiết khác:

Các bài học để học tốt Toán 11 Bài 3: Hai mặt phẳng vuông góc:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác