Giải Toán 10 trang 56 Tập 2 Chân trời sáng tạo

Với Giải Toán 10 trang 56 Tập 2 trong Bài 2: Đường thẳng trong mặt phẳng toạ độ Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 56.

Thực hành 5 trang 56 Toán lớp 10 Tập 2: Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau:

a) ∆1: x + 3y – 7 = 0 và ∆2: x – 2y + 3 = 0;

b) Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau

c) Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau

Lời giải:

a) Đường thẳng ∆1: x + 3y – 7 = 0 có VTPT là n1 = (1; 3).

Đường thẳng ∆2: x – 2y + 3 = 0 có VTPT là n2 = (1; -2).

Ta có: cos(∆1; ∆2)

= cosTìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau

Suy ra (∆1; ∆2) = 45°.

Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 45°.

b) Đường thẳng ∆1: 4x – 2y + 5 = 0 có vectơ pháp tuyến là n1(4; -2)

Đường thẳng ∆2:Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau có vectơ chỉ phương u2(1; 2) hay vectơ pháp tuyến là n2(2; -1).

Ta có: a1.b2 – a2.b1 =4.(-1) – (-2).2 = 0. Do đó hai vectơ n1n2 cùng phương.

Suy ra (∆1; ∆2) = 0°.

Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 0°.

c) Đường thẳng ∆1: Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp saucó vectơ chỉ phương là u1(1; 2)

Đường thẳng ∆2: Tìm số đo của góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp saucó vectơ chỉ phương là u2(2; -1)

Ta có: u1.u2=1.2+2.1=0. Do đó hai vectơ u1u2 vuông góc.

Suy ra (∆1; ∆2) = 90°.

Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 90°.

Vận dụng 5 trang 56 Toán lớp 10 Tập 2: Tìm số đo của góc giữa hai đường thẳng là đồ thị của hai hàm số y = x và y = 2x + 1.

Lời giải:

Gọi đường thẳng d: y = x ⇔ -x + y = 0. Khi đó vectơ pháp tuyến là n1(-1; 1).

Gọi đường thẳng d’: y = 2x + 1 ⇔ - 2x + y – 1 = 0. Khi đó vectơ pháp tuyến là n2(-2; 1).

Khi đó cos(d; d’) = Tìm số đo của góc giữa hai đường thẳng là đồ thị của hai hàm số y = x

Suy ra (d; d’) = 18,43°.

Vậy góc giữa hai đường thẳng d và d’ là 18,43°.

Hoạt động khám phá 7 trang 56 Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho đường thẳng ∆: ax + by + c = 0 (a2 + b2 > 0) có vectơ pháp tuyến n và cho điểm M0(x0; y0) có hình chiếu vuông góc H(xH; yH) trên ∆ (Hình 9).

Trong mặt phẳng Oxy, cho đường thẳng ∆: ax + by + c = 0

a) Chứng minh rằng hai vectơ nHM0 cùng phương và tìm tọa độ của chúng.

b) Gọi p là tích vô hướng của hai vectơ nHM0. Chứng minh rằng p = ax0 + by0 + c.

c) Giải thích công thức Trong mặt phẳng Oxy, cho đường thẳng ∆: ax + by + c = 0

Lời giải:

a) Do n là vectơ pháp tuyến của ∆ nên n⊥∆.

Ta lại có H là hình chiếu của M trên đường thẳng ∆ nên MH ⊥∆.

Suy ra n// HM0(cùng vuông góc với ∆)

Do đó hai vectơ nHM0 cùng phương.

n là vectơ pháp tuyến của ∆ nên tọa độ của vectơ pháp tuyến là n(a; b).

Ta có HM0 = (x0 – xH; y0 – yH).

b) Ta có: n.HM0=ax0xH+by0yH = ax0 – axH + by0 – byH = ax0 + by0 – axH – byH .

Vì điểm H thuộc đường thẳng ∆ nên thay tọa độ điểm H vào phương trình ∆ ta được:

– axH – byH = c ⇔ – axH – byH = c.

Khi đó n.HM0= ax0 + by0 + c với c = – axH – byH.

Vậy p = ax0 + by0 + c.

c) Vì hai vectơ nHM0 cùng phương nên góc giữa hai vectơ nHM0 bằng 0° hoặc bằng 180°.

TH1. Góc giữa hai vectơ nHM0 bằng 0°

Áp dụng công thức cos giữa hai vectơ ta được:

Trong mặt phẳng Oxy, cho đường thẳng ∆: ax + by + c = 0

TH2. Góc giữa hai vectơ nHM0 bằng 180°

Áp dụng công thức cos giữa hai vectơ ta được:

Trong mặt phẳng Oxy, cho đường thẳng ∆: ax + by + c = 0

Lời giải bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng toạ độ hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác