Chứng minh rằng nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC

Bài 15 trang 71 sách bài tập Toán lớp 7 Tập 2:

a) Chứng minh rằng nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại đỉnh A.

b) Cho đoạn thẳng AB. Hãy nêu một cách sử dụng kết quả của câu a để vẽ đường thẳng vuông góc với AB tại A (bằng thước và compa).

Lời giải:

a) Xem hình bên :

Chứng minh rằng nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC

Theo giả thiết, ta có ΔMAB và ΔMAC là hai tam giác cân đỉnh M.

Từ đó suy ra: B^1=A^1C^1=A^2

Mặt khác, tổng các góc trong tam giác ABC bằng 180o nên:

180o=B^1+A^1+C^1+A^1=2 (A^1+A^2)

Từ đó suy ra A^1+A^2=90o

Do đó tam giác ABC vuông tại A.

Vậy nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại đỉnh A.

b) Vẽ tam giác cân MAB rồi kéo dài BM về phía M đến điểm C sao cho MC = BM.

Chứng minh rằng nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC

Ta có AM = MC = MB (gt)

Suy ra AM =12(MC + MB) = 12BC .

Xét tam giác ABC có:

AM là đường trung tuyến (M là trung điểm của BC);

AM =12BC (cmt).

Suy ra tam giác ABC vuông tại A (đã chứng minh ở câu a).

Vậy ta đã vẽ được đường thẳng AC vuông góc với AB tại A.

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác