Cho tam giác đều ABC cạnh a. Tính: a) | vectơ AB + vectơ BC |

Bài 39 trang 92 SBT Toán 10 Tập 1: Cho tam giác đều ABC cạnh a. Tính:

a) |AB+BC| ;

b) |ABAC| .

c) |AB+AC| .

Lời giải:

a) Ta có: AB+BC=AC (quy tắc 3 điểm)

|AB+BC|=|AC|=AC=a

Vậy |AB+BC|=a .

b) Ta có: ABAC=AB+CA=CA+AB=CB

|ABAC|=|CB|=CB=a .

Vậy |ABAC|=a .

c) Gọi D là điểm thỏa mãn ABDC là hình bình hành, M là trung điểm của BC.

Khi đó: AB+AC=AD

|AB+AC|=|AD| .

Xét tam giác ABC, có AM là đường trung tuyến nên AM là đường cao

⇒ AM = a32

⇒ AD = 2AM = 2.a32=a3 .

|AB+AC|=|AD|=a3 .

Vậy |AB+AC|=a3 .

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác