Sách bài tập Toán 7 Bài 6: Tam giác cân
Bài 67 trang 147 sách bài tập Toán 7 Tập 1: a, Tính góc ở đáy của một tam giác cân biết góc ở đỉnh bằng 50o,bằng ao.
b, Tính góc ở đỉnh của một tam giác cân biết góc ở đáy bằng 50o,bằng ao
Lời giải:
Bài 68 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A có ∠A= 100°. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng MN // BC
Lời giải:
Tổng ba góc trong một tam giác bằng 180o nên:
Bài 69 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC, N là trung điểm của AB.
Chứng minh rằng BM = CN
Lời giải:
+) Do M là trung điểm của AC nên: (1)
+) Do N là trung điểm của AB nên: (2)
Lại có: AB = AC ( vì tam giác ABC cân tại A). (3)
Từ (1); (2); (3) suy ra: AN = NB = AM = MC.
+) Xét ∆ AMB và ∆ANC có:
Góc A chung
AM = AN ( chứng minh trên)
AB = AC ( vì tam giác ABC cân tại A)
Suy ra: ∆ AMB = ∆ANC ( c.g.c)
Do đó: BM = CN ( hai cạnh tương ứng).
Bài 70 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Lấy điểm H thuộc cạnh AC, điểm K thuộc cạnh AB sao cho AH = AK. Gọi O là giao điểm của BH và CK.
Chứng minh rằng ΔOBClà tam giác cân.
Lời giải:
+) Xét ΔABH và ΔACK, ta có:
AB = AC ( vì tam giác ABC cân tại A)
AH = AK (giả thiết)
Suy ra: ΔABH = ΔACK(c.g.c)
+ Do đó, tam giác OBC cân tại O.
Bài 71 trang 147 sách bài tập Toán 7 Tập 1: Vẽ lại hình bên vào vở rồi đặt bài toán vẽ tam giác để có hình bên.
Lời giải:
- Vẽ tam giác ABC vuông cân tại A
- Vẽ tam giác đều ABD sao cho D và C nằm trên 2 nửa mặt phẳng có bờ chứa đường thẳng AB.
- Vẽ tam giác vuông cân ADE sao cho E và B nằm trên 2 nửa mặt phẳng đối bờ chứa đường thẳng AD.
Chứng minh tam giác ACE là tam giác cân.
Bài 72 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh rằng ΔADE là tam giác cân.
Lời giải:
*) Ta có: ΔABC cân tại A
BD = CE (giả thiết)
Suy ra: ΔABD = ΔACE (c.g.c)
⇒ AD = AE ( hai cạnh tương ứng)
*) Tam giác ADE có AD = AE nên tam giác này cân tại A (theo định nghĩa tam giác cân)
Bài 73 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh rằng BD // EC
Lời giải:
Ta có: BD là tia phân giác của ∠ABC (giả thiết)
Suy ra: (1)
Lại có: BE = BC (giả thiết)
=>∆BEC cân tại B (theo định nghĩa)
Suy ra: ∠E= ∠BCE (tính chất tam giác cân)
∆BEC có ABC là góc ngoài đỉnh B
=>∠ABC= ∠E + ∠BCE (tính chất góc ngoài tam giác)
Suy ra: ∠ABC=2∠E
Hay ∠E = (1/2)∠ABC (2)
Từ (1) và (2) suy ra: ∠E = ∠B1 = (1/2)∠ABC
Vậy BD // CE (vì có cặp góc ở vị trí đồng vị bằng nhau)
Bài 74 trang 147 sách bài tập Toán 7 Tập 1: Tính số đo các góc của tam giác ACD như hình bên.
Lời giải:
Ta có: ∆ABC vuông cân tại A
Suy ra: ∠ACB=∠ABC=45o
Lại có: ∆BCD vuông cân tại B (BC = BD)
Suy ra: ∠BCD=∠Dtính chất tam giác cân)
Trong ∆BCD ta có ∠ABC góc ngoài tại đỉnh B
Do vậy: ∠ABC=∠BCD + ∠D (tính chất góc ngoài của tam giác)
Suy ra: ∠ABC= ∠2∠BCD
Do đó: ∠BCD = 1/2 . ∠ABC = 1/2. 45º= 22º30’
=> ∠ACD = ∠ACB + ∠BCD = 45o+22o30'=67o30'
Bài 75 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Tính số đo góc BCD
Lời giải:
Ta có: ∆ABC cân tại A
⇒ AB = AC và ∠B = ∠C1 (tính chất tam giác cân) (1)
Lại có: AD = AB ( do A là trung điểm BD).
Suy ra: AD = AC do đó ∆ACD cân tại A
Nên ∠D =∠C2(tính chất tam giác cân) (2)
Mà ∠BCD =∠C1+ ∠C2 (3)
Từ (1); (2) và (3) suy ra: ∠BCD =∠B +∠D (4)
Trong ∆BCD, ta có:
∠BCD +∠B +∠D =180o (tổng 3 góc trong tam giác) (5)
từ (4) và (5) suy ra : 2 ∠BCD =180° hay∠BCD =90°
Bài 76 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A có cạnh bên bằng 3cm. Gọi D là một điểm thuộc đáy BC. Qua D, kẻ cac đường thẳng song song vói các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E.
Tính tổng DE + DF
Lời giải:
Ta có: DF // AC(gt)
=> ∠D1 = ∠C (hai góc đồng vị) (1)
Lại có: ΔABC cân tại A
=> ∠B = ∠C (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠B = ∠D1
Hay ΔBFD cân tại F =>BF = DF (3)
Nối AD. Xét ΔAFD và ΔDEA có:
∠ADF =∠EAD(so le trong vì DF // AC)
AD cạnh chung
∠DAF =∠ADE (so le trong vì DE // AB)
Suy ra: ΔAFD= ΔDEA(g.c.g)
Nên AF = DE (hai cạnh tương ứng) (4)
Từ(3) và (4) suy ra: DE + DF = AF + BF = AB = 3cm
Bài 77 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác đều ABC. Lấy các điểm D, E , F theo thứ tự thuộc các cạnh AB, BC và CA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều?
Lời giải:
Ta có: AB = AD +DB (1)
BC = BE + EC (2)
AC = AF + FC (3)
AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)
AD = BE = CF ( giả thiết) (5)
Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF
Xét ΔADF và ΔBED, ta có:
AD = BE (gt)
∠A =∠B =60o (vì tam giác ABC đều)
AF = BD (chứng minh trên)
suy ra: ΔADF= ΔBED (c.g.c)
⇒ DF=ED (hai cạnh tương ứng) (6)
Xét ΔADF và ΔCFE, ta có:
AD = CF (gt)
∠A =∠C =60o (vì tam giác ABC đều)
AF = CE (chứng minh trên)
suy ra: ΔADF= ΔCFE (c.g.c)
Nên: DF = FE (hai cạnh tương ứng) (7)
Từ (6) và (7) suy ra: DF = ED = FE
Vậy tam giác DFE đều
Bài 78 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC. Gọi giao điểm của đường thẳng này với AB, AC theo thứ tự là D,E.
Chứng minh rằng: DE = BD + CE
Lời giải:
Ta có: DI // BC (giả thiết)
Suy ra:∠I1 =∠B1(so le trong) (1)
Lại có:∠B1 =∠B2 (2)
(vì BI là tia phân giác góc ABC)
Từ (1) và (2) suy ra:∠I1 =∠B2
=>∆BDI cân tại D =>BD=DI (3)
Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)
Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)
Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E
Suy ra: CE = EI (6)
Từ (3) và (6) suy ra: BD + CE = DI + EI = DE
Bài 79 trang 148 sách bài tập Toán 7 Tập 1: Cho đường tròn tâm O đường kính AB. Gọi M là điểm nằm trên đường tròn, tính số đo góc AMB.
Lời giải:
Nối OM, ta có:
OA = OM (bán kính đường tròn tâm O)
Nên ΔOAM cân tại O
⇒∠A =∠M1(tính chất tam giác cân)(1)
OM = OB (bán kính đường tròn tâm O)
Suy ra: ΔOBM cân tại O
⇒∠B =∠M2(tính chất tam giác cân) (2)
Trong ΔAMB ta có:
∠A + ∠AMB + ∠B = 180º (tổng ba góc trong tam giác)
⇒∠A +∠B +∠M1+∠M2 =180 (3)
Từ (1), (2) và (3) suy ra: 2(∠M1 + ∠M2)=180o
Vậy: ∠M1+∠M2=90o hay ∠(AMB) =90o
Bài 80 trang 148 sách bài tập Toán 7 Tập 1: Đặt đề toán theo hình dưới đây. Sau đó vẽ lại hình theo đề toán rồi đo goác DAE
Lời giải:
Đề toán:
Vẽ tam giác ABC đều
Vẽ tam giác ABD vuông cân tại B sao cho D và C nằm trên hai nửa mặt phẳng bờ chứa đường thẳng AB.
Vẽ tam giác ACE vuông cân tại C sao cho E và B nằm trên hai nửa mặt phẳng đối có bờ chứa đường thẳng AC
Đo ∠DAE =150o
Chứng minh:
Bài 81 trang 148 sách bài tập Toán 7 Tập 1: Chứng minh rằng tam giác ABC vẽ trên giấy kẻ ô vuông (hình dưới ) là tam giác nhọn.
Lời giải:
Nối A với D tạo thành đường chéo ô vuông
Gọi K giao điểm AC với đỉnh ô vuông, H là giao điểm DK với đường kẻ ngang ô vuông đi qua A. ( như hình vẽ)
Ta có: ΔAHK vuông cân tại H =>∠HAK =45o
ΔAHD vuông cân tại H=>∠HAD =45o
=>∠DAK =∠HAK +∠HAD =45o+45o=90o
hay ∠DAC =90o
=>∠BAC < 90o
Hình vuông có 4 góc, mỗi góc bằng 900. Từ hình vẽ suy ra: ∠ACB < 90o và ∠ABC <90o
Vậy tam giác ABC là tam giác nhọn
Bài 6.1 trang 148 sách bài tập Toán 7 Tập 1: Góc ADB trên hình bs 3 có số đo bằng
(A) 20o;
(B) 25o;
(C) 30o;
(D) 35o;
Hãy chọn phương án đúng.
Lời giải:
+) Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A
+) Tam giác ACD có góc ACB là góc ngoài của tam giác nên:
+) Lại có: AC = CD ( giả thiết) nên tam giác ACD cân tại C.
Chọn đáp án B
Bài 6.2 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Tính số đo góc ADB
Lời giải:
+) Do tam giác ABC vuông cân tại A nên:
+) Tam giác ABD có AB = BD nên tam giác ABD cân tại B.
+) Tam giác ABD có góc ABC là góc ngoài tam giác tại đỉnh B nên:
Bài 6.3 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác cân ABC có ∠A= 100o. Trên cạnh BC lấy điểm D và E sao cho BD = BA, CE = CA. Tính số đo góc DAE.
Lời giải:
+) Ta có:
(tổng ba góc trong 1 tam giác)
Lại có: tam giác ABC là tam giác cân tại A nên:
+)Xét tam giác ABD có BA= BD (giả thiết) nên tam giác ABD cân tại B.
Lại có; ( tổng ba góc trong 1 tam giác)
+) Tương tự, ta có tam giác AEC cân tại C ( vì CA =CE)
+) Xét tam giác ADE có:
( tổng ba góc trong tam giác)
Suy ra:
Bài 6.4 trang 148 sách bài tập Toán 7 Tập 1: Cho hình bs 4. Chứng minh rằng :
a) C,O,D thẳng hàng ;
b) BC = AD
Lời giải:
+) Xét tam giác OAD có: OA = OD (= bán kính đường tròn)
Suy ra tam giác OAD cân tại O.
Suy ra: ∠A = ∠D ( tính chất tam giác cân). (1)
+) Xét tam giác OBC có: OB = OC (= bán kính đường tròn)
Suy ra tam giác OBC cân tại O.
Suy ra: ∠B = ∠C ( tính chất tam giác cân). (2)
+) Lại có: ∠A = ∠B ( giả thiết) (3)
Từ (1); (2) và (3) suy ra: ∠A = ∠B = ∠C = ∠D
Vậy hai tam giác cân OAD và OBC có góc ở đáy bằng nhau nên góc ở đỉnh bằng nhau: ∠AOD = ∠BOC (4).
+) Ta có: ∠AOD + ∠DOB = 180º ( hai góc kề bù) (5)
Từ (4) và (5) suy ra: ∠BOC + ∠DOB = 180º hay 3 điểm C, O và D thẳng hàng.
b) Xét tam giác OAD và ∆ OCB có:
OA = OC ( = bán kính đường tròn)
∠AOD = ∠BOC ( hai góc đối đỉnh)
OD = OB ( = bán kính đường tròn)
Suy ra:∆ OAD = ∆ OCB ( c.g.c)
Suy ra: AD = BC ( hai cạnh tương ứng).
Xem thêm các bài giải sách bài tập Toán lớp 7 chọn lọc, chi tiết khác:
- Bài 7: Định lí Pi-ta-go
- Bài 8: Các trường hợp bằng nhau của tam giác vuông
- Ôn tập chương 2
- Bài 1: Thu thập số liệu thống kê, tần số
- Bài 2: Bảng "tần số" các giá trị của dấu hiệu
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều