Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)



Tổng hợp công thức Toán 8 Định lí Pitago & Tứ giác sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều như là cuốn sổ tay công thức giúp học sinh lớp 8 nắm vững kiến thức trọng tâm Toán 8 Định lí Pitago.




Lưu trữ: Công thức Toán 8 Chương 1 Hình học (sách cũ)

1. Tứ giác

- Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

- Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tam giác. (Ngược lại là tứ giác lõm)

ABCD, EFGH là các tứ giác lồi

MNQP là tứ giác lõm

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Định lí: Tổng các góc trong của một tứ giác bằng 360o

- Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác. Tổng các góc ngoài của một tứ giác bằng 360o

2. Hình thang

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

ABCD là hình thang:

- AB // CD

-Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Nếu Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Nếu Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- ABCD là hình thang, Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới) thì ABCD là hình thang vuông

3. Hình thang cân

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

- Hai góc đối của hình thang cân bằng 180o

- Tính chất: ABCD là hình thang cân thì AD = BC; AC = BD

- Dấu hiệu nhận biết

+ Tứ giác ABCD có Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới) thì ABCD là hình thang cân

+ Tứ giác ABCD có Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới) thì ABCD là hình thang cân

+ Tứ giác ABCD có Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới) thì ABCD là hình thang cân

4. Đường trung bình của tam giác, của hình thang

+) Đường trung bình của tam giác: là đoạn thẳng nối trung điểm hai cạnh của tam giác.

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Tam giác ABC: Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới) thì MN là đường trung bình của tam giác ABC

- MN là đường trung bình của tam giác ABC Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

-Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

+) Đường trung bình của hình thang: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Hình thang ABCD: Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới) thì MN là đường trung bình của hình thang ABCD

- MN là đường trung bình của hình thang ABCD thì Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

5. Đối xứng trục

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Hai điểm A, B gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm đó.

- Quy ước: Nếu điểm M nằm trên đường thẳng d thì điểm đối xứng với M qua đường thẳng d cũng là điểm M.

- Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng d và ngược lại. Đường thẳng d gọi là trục đối xứng của hai hình đó

- Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một đường thẳng thì chúng bằng nhau.

- Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H. Ta nói hình H có trục đối xứng

- Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

6. Hình bình hành

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Hình bình hành là tứ giác có các cạnh đối song song

- Hình bình hành là một hình thang đặc biệt (hình bình hành là hình thang có hai cạnh bên song song)

ABCD là hình bình hành nên: Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

+) Dấu hiệu nhận biết:

- Tứ giác có các cạnh đối song song là hình bình hành

- Tứ giác có các cạnh đối bằng nhau là hình bình hành.

- Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

- Tứ giác có các góc đối bằng nhau là hình bình hành.

- Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

7. Đối xứng tâm

- Hai điểm A, B gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó. (Quy ước: Điểm đối xứng với điểm O qua điểm O cũng là điểm O)

- Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với mỗi điểm thuộc hình kia qua điểm O và ngược lại. Điểm O gọi là tâm đối xứng của hai hình đó.

- Nếu hai đoạn thẳng (góc, tam giác) đối xứng với nhau qua một điểm thì chúng bằng nhau.

- Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm O cũng thuộc hình H. Ta nói hình H có tâm đối xứng.

- Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

8. Hình chữ nhật

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Hình chữ nhật là tứ giác có bốn góc vuông.

- Từ định nghĩa hình chữ nhật, ta suy ra: Hình chữ nhật cũng là một hình bình hành, một hình thang cân.

+) Tính chất:

- Hình chữ nhật có tất cả các tính chất của hình hành, của hình thang cân.

- Từ tính chất của hình thang cân và hình bình hành: Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường.

+) Dấu hiệu nhận biết:

- Tứ giác có ba góc vuông là hình chữ nhật

- Hình thang cân có một góc vuông là hình chữ nhật.

- Hình bình hành có một góc vuông là hình chữ nhật

- Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Định lí:

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

`

- Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

9. Đường thẳng song song với một đường thẳng cho trước

- Khoảng cách giữa hai đường thẳng song song: Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm tuỳ ý trên đường thẳng này đến đường thẳng kia.

- Tính chất: Các điểm cách đường thẳng b một khoảng bằng h nằm trên hai đường thẳng song song với b và cách b một khoảng bằng h.

- Nhận xét: Tập hợp các điểm cách một đường thẳng cố định một khoảng bằng h không đổi là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó một khoảng bằng h.

- Các đường thẳng song song cách đều là các đường thẳng song song với nhau và khoảng cách giữa các đường thẳng bằng nhau.

+) Định lí:

- Nếu các đường thẳng song song cách đều cắt một đường thẳng thì chúng chắn trên đường thẳng đó các đoạn thẳng liên tiếp bằng nhau.

- Nếu các đường thẳng song song cắt một đường thẳng và chúng chắn trên đường thẳng dó các đoạn thẳng liên tiếp bằng nhau thì chúng song song cách đều.

10. Hình thoi

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

- Hình thoi là tứ giác có bốn cạnh bằng nhau. Hình thoi cũng là một hình bình hành.

- Tính chất: Hình thoi có tất cả các tính chất của hình bình hành

ABCD là hình thoi Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

+) Dấu hiệu nhận biết:

- Tứ giác có bốn cạnh bằng nhau là hình thoi.

- Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

- Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

- Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.

11. Hình vuông

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

+ Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau.

+ Từ định nghĩa hình vuông, ta suy ra:

- Hình vuông là hình chữ nhật có bốn cạnh bằng nhau.

- Hình vuông là hình thoi có một góc vuông.

- Như vậy: Hình vuông vừa là hình chữ nhật, vừa là hình thoi.

+ Tính chất:

- Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi.

- Đường chéo của hình vuông vừa bằng nhau vừa vuông góc với nhau

+ Dấu hiệu nhận biết:

- Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

- Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông

- Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông

- Hình thoi có một góc vuông là hình vuông

- Hình thoi có hai đường chéo bằng nhau là hình vuông

BẢNG TỔNG KẾT

Công thức Toán 8 Định lí Pitago & Tứ giác (sách mới)

Xem thêm tổng hợp công thức môn Toán lớp 8 đầy đủ và chi tiết khác:




Đề thi, giáo án các lớp các môn học