Cho tam giác ABC có góc B lớn hơn góc C. Tia phân giác góc BAC cắt BC tại điểm D

Câu 5 trang 90 vở bài tập Toán lớp 7 Tập 2:Cho tam giác ABC có B^ > C^. Tia phân giác góc BAC cắt BC tại điểm D.

a) Chứng minh ADB^<ADC^;

b) Kẻ tia Dx nằm trong góc ADC sao cho ADx^ = ADB^. Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh ∆ABD = ∆AED, AB < AC.

Lời giải:

Cho tam giác ABC có góc B lớn hơn góc C. Tia phân giác góc BAC cắt BC tại điểm D

a) Xét hai tam giác ADB và ADC, ta có:

DAB^+ B^ + ADB^ = DAC^ + C^+ ADC^ = 180o (tổng ba góc của một tam giác)

DAB^ = DAC^, B^ > C^ suy ra ADB^ < ADC^.

b) Xét hai tam giác ABD và AED, ta có:

DAB^ = DAE^ (vì AD là tia phân giác của góc BAC);

AD là cạnh chung;

ADB^ = ADE^ (giả thiết).

Suy ra ∆ABD = ∆AED (g.c.g).

Do đó:

AB = AE (hai cạnh tương ứng).

Vì E thuộc cạnh AC, E khác A và C nên AE < AC. Suy ra AB < AC.

Xem thêm các bài giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:


Giải bài tập lớp 7 Cánh diều khác