Cho hai tam giác ABC và A’B’C’ thoả mãn: AB = A’B’, góc A = góc A', góc C = góc C'

Câu 1 trang 89 vở bài tập Toán lớp 7 Tập 2:Cho hai tam giác ABC và A’B’C’ thoả mãn: AB = A’B’, A^=A'^, C^=C'^. Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?

Lời giải:

a) Xét hai tam giác ABC và A’B’C’, ta có: , A^+B^+C^= A'^+B'^+C'^ = 180o (tổng ba góc của một tam giác)

A^=A'^, C^=C'^(giả thiết) nên B^=B'^

Xét hai tam giác ABC và A’B’C’, ta có:

AB = A’B’ (giả thiết), A^=A'^B^=B'^

Suy ra: ∆ABC = ∆A’B’C’ (g.c.g).

Xem thêm các bài giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:


Giải bài tập lớp 7 Cánh diều khác