Cách tính độ dài cạnh góc vuông trong tam giác vuông lớp 9 (cực hay)
Bài viết Cách tính độ dài cạnh góc vuông trong tam giác vuông lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính độ dài cạnh góc vuông trong tam giác vuông.
• Xác định vị trí cạnh huyền
• Áp dụng hệ thức về cạnh hoặc đường cao đã được học.
Cho ΔABC, = 900, AH ⊥ BC, BC = a, AB = c, AC = b, AH = h thì:
+) BH = c’ được gọi là hình chiếu của AB trên cạnh huyền BC
+) CH = b’ được gọi là hình chiếu của AC trên cạnh huyền BC
Khi đó ta có các hệ thức về cạnh và đường cao trong tam giác vuông:
1) b2 = ab'; c2 = ac'
2) h2 = b'c'
3) ha = bc
4)
5) a2 = b2 + c2( Định lý Pytago)
Ví dụ 1: Cho tam giác ABC vuông tại A, đường cao AH, biết HB = 20cm, HC = 30cm. Tính AB, AC, AH.
Bài giải:
Ta có: BC = BH + HC = 20 + 30 = 50 (cm)
Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
+) AB2 = BH.BC = 20.50 = 1000 ⇒ AB = (cm)
+) AC2 = CH.CB = 30.50 = 1500 ⇒ AC = (cm)
+) AH2 = BH.CH = 20.30 = 600 ⇒ AH = (cm)
Ví dụ 2: Cho tam giác ABC có AB = 9cm; AC = 12cm; BC = 15cm, đường cao AH. Tính độ dài AH.
Bài giải:
Xét tam giác ABC có:
⇒ Tam giác ABC vuông tại A có đường cao AH (Định lý Py - ta - go đảo)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AH.BC = AB.AC ⇒ AH.15 = 9.12 ⇒ AH = 7,2 cm
Ví dụ 3: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AC : AB = . Tỉ số HC : HB bằng
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ABC có đường cao AH:
Bài 1: Giá trị của x trong hình bên là bao nhiêu biết BC = 20, AB = 12
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AB2 = BH.BC
⇔ 122 = x.20
⇒ x =
Đáp án A.
Bài 2: Tìm AH, BC với các giá trị như hình bên.
Bài giải:
+) Áp dụng định lý Pytago cho tam giác vuông ABC ta có:
BC2 = AB2 + AC2
⇒ BC2 = 62 + 82 = 100 ⇒ BC = = 10
+) Áp dụng hệ thức lượng trong tam giác ABC vuông tại A có đường cao AH:
Đáp án C.
Bài 3: Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 6cm, BH = 9cm. Tính độ dài BC.
C. 3
D. 12
Bài giải:
Đặt HC = x (x > 0)⇒ BC = x + 9
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AC2 = BC.HC
⇔ 62 = (x + 9). x
⇔ x2 + 9x - 36 = 0
⇔ x2 + 12x - 3x - 36 = 0
⇔ x(x + 12) - 3(x + 12) = 0
⇔ (x - 3)(x + 12) = 0
⇒
Vậy BC = BH + CH = 9 + 3 = 12cm
Đáp án D.
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 20cm. Tính HC.
A. 6,4cm
B. 7,2cm
C. 12,8cm
D. 16,4cm
Bài giải:
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = HB.BC ⇒ HB =
⇒ HB = 7,2cm
⇒ HC = BC = HB = 20 - 7,2 = 12,8cm
Đáp án C.
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 6cm, HB = 4cm. Tính BC.
A. 10cm
B. 11cm
C. 12 cm
D. 13 cm
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
⇒ BC = BH + HC = 4 + 9 = 13 (cm)
Đáp án D.
Bài 6: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính AH.
A. 5,6 cm
B. 2,4 cm
C. 3,6 cm
D. 3,4 cm
Bài giải:
Theo hệ thức lượng trong tam giác vuông ABC ta có:
Đáp án B.
Bài 7: Cho ΔMNP vuông tại M, đường cao MH = 18cm. Biết HN : HP = 1 : 4. Tính độ dài cạnh huyền NP.
A. 36 cm
B. 45 cm
C. 54 cm
D. 63 cm
Bài giải:
Gọi HN = x (x > 0) thì HP = 4x
Theo hệ thức lượng trong tam giác vuông ta có:
MH2 = HN.HP
⇔ 182 = x.4x
⇔ 4x2 = 324
⇔ x2 = 81
⇔ x = 9 (cm)
⇒ HN = 9 cm và HP = 4x = 4.9 = 36 cm
Vậy NP = HN + HP = 9 + 36 = 45 cm
Đáp án B.
Bài 8: Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AC : AB = và HC - HB = 2cm. Độ dài HC bằng:
A. 4 cm
B. 2 cm
C. cm
D. cm
Bài giải:
Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:
Đáp án A.
Bài 9: Cho tam giác ABC vuông tại A có AB : AC = 2 : 3 và đường cao AH bằng 6cm. Khi đó độ dài đoạn thẳng AC bằng:
Bài giải:
Gọi AB = 2x (x > 0) thì AC = 3x
Áp dụng hệ thức lượng trong tam giác vuông ABC ta có:
Đáp án C.
Bài 10: Cho tam giác ABC vuông ở A, đường cao AH. Biết HC = 3cm; HB = 1cm. Tính diện tích tam giác ABC.
Bài giải:
Xét tam giác ABC vuông ở A có đường cao AH:
+) AH2 = HB.HC( Hệ thức lượng trong tam giác)
Đáp án B.
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải chi tiết hay khác:
- Cách dựng cạnh huyền, dựng đoạn trunh bình nhân của hai đoạn thẳng cho trước
- Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay
- Công thức, cách tính tỉ số lượng giác của góc nhọn cực hay
- Dụng góc nhọn alpha khi biết tỉ số lượng giác sin, cos, tan của góc đó
- Chứng minh hệ thức lượng giác trong tam giác vuông cực hay
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều