Cách tính giới hạn của dãy số cực hay
Bài viết Cách tính giới hạn của dãy số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính giới hạn của dãy số.
- Ta quan sát, phân tích những đặc điểm của dãy số đề bài cho, từ đó rút ra công thu gọn cho tổng đó (có thể dùng công thức tính tổng của cấp số cộng hoặc cấp số nhân) hoặc biến đổi đại số để giảm bớt những hạng tử trong tổng,…
- Dùng các quy tắc tính giới hạn của dãy số để tính giới hạn của tổng đã cho sau khi đã thu gọn.
Bài 1: Cho dãy số (un) với . Tính lim un
Hướng dẫn:
un là tổng n số hạng đầu tiên của một cấp số nhân có u1 = 1/2 và q = (-1)/2.
Do đó
Bài 2: Tính lim
Hướng dẫn:
Vậy
Bài 3: Tính
Hướng dẫn:
Ta có
Mà
Vậy
Bài 4: Tính
Hướng dẫn:
Bài 5: Tính
Hướng dẫn:
Bài 6: Cho dãy số (un). Biết với mọi n ≥ 1. Tìm
Hướng dẫn:
Bài 7: Tính
Hướng dẫn:
Khi đó
Bài 1: Tìm giá trị đúng của
A. √2 + 1. B. 2. C. 2√2. D. 1/2.
Lời giải:
Đáp án: C
Ta có:
là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 1 và công bội là 1/2. Khi đó:
Vậy S = 2√2.
Chọn đáp án C.
Bài 2: Tính giới hạn:
A. 0 B. 1/3 C. 2/3 D. 1
Lời giải:
Đáp án: B
Ta có:
Đáp án B.
Bài 3: Tính giới hạn:
A. 0 B. 1 C. 3/2 D. Không có giới hạn
Lời giải:
Đáp án: B
Ta có:
Khi đó
Đáp án B
Bài 4: Tính giới hạn:
A. 1 B. 0 C. 2/3 D. 2
Lời giải:
Đáp án: D
Ta có:
Khi đó
Chọn đáp án D.
Bài 5: Tính giới hạn:
A. 1/2 B. 1 C. 0 D. 2/3
Lời giải:
Đáp án: A
Ta có:
Đáp án A
Bài 6: Tính giới hạn:
A. 11/18 B. 2 C. 1 D. 3/2
Lời giải:
Đáp án: A
Bài 7: Tính giới hạn:
A. 1 B. 1/2 C. 1/4 D. 3/2
Lời giải:
Đáp án: A
Ta có:
Đáp án A
Bài 8: Cho dãy số (un) với . Mệnh đề nào sau đây là mệnh đề đúng?
A. limun = 0
B. limun = 1/2
C. limun = 1
D. Dãy số (un) không có giới hạn khi n → +∞
Lời giải:
Đáp án: B
Ta có:
Do đó
Đáp án B
Bài 9: bằng:
Lời giải:
Đáp án: A
Chọn A.
Từ thức là tổng của n số hạng đầu tiên của cấp số cộng (un) với n = 1, un = 4n-3 và công bội d = 4
Do đó
Tương tự ta có
Vậy
Bài 10: bằng:
+∞ B. 3 C. 3/2 D. 2/3
Lời giải:
Đáp án: A
Chọn A
Ta có từ thức là tổng n số hạng đầu tiên của cấp số nhân (un) với ui = 3 và q = 3
Do đó 3 + 32 + 33 + ⋯ + 3n =
Mẫu thức là tổng của n+1 số hạng đầu tiên của cấp số nhân (vn) với vn = 1 và q = 2.
Do đó
Vậy
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Tìm giới hạn của dãy số bằng định nghĩa
- Dạng 2: Tổng của cấp số nhân lùi vô hạn
- 60 bài tập trắc nghiệm Giới hạn của dãy số có đáp án (phần 1)
- 60 bài tập trắc nghiệm Giới hạn của dãy số có đáp án (phần 2)
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều