Phép cộng và phép trừ đa thức (Lý thuyết Toán lớp 8) | Kết nối tri thức
Với tóm tắt lý thuyết Toán 8 Bài 3: Phép cộng và phép trừ đa thức sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 8 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.
Lý thuyết Phép cộng và phép trừ đa thức
•Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu “+” (hay dấu “–”) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.
Ví dụ:
+ Thực hiện phép cộng đa thức A = 5x2y + 3x – 2 và B = 2xy – 4x2y + 3x – 1 ta làm như sau:
A + B = (5x2y + 3x – 2) + (2xy – 4x2y + 3x – 1) (lập tổng)
= 5x2y + 3x – 2 + 2xy – 4x2y + 3x – 1 (bỏ dấu ngoặc rồi thu gọn đa thức)
= (5x2y – 4x2y) + (3x + 3x) + (– 2 – 1) + 2xy
= x2y + 6x – 3 + 2xy
+ Thực hiện phép trừ đa thức A = 5x2y + 3x – 2 và B = 2xy – 4x2y + 3x – 1 ta làm như sau:
A – B = (5x2y + 3x – 2) – (2xy – 4x2y + 3x – 1) (lập hiệu)
= 5x2y + 3x – 2 – 2xy + 4x2y – 3x + 1 (bỏ dấu ngoặc rồi thu gọn đa thức)
= (5x2y + 4x2y) + (3x – 3x) + (– 2 + 1) – 2xy
= 9x2y – 1 – 2xy
Chú ý
• Phép cộng đa thức cũng có các tính chất giao hoán và kết hợp tương tự như phép cộng các số.
• Với A, B, C là những đa thức tùy ý, ta có:
A + B + C = (A + B) + C = A + (B + C).
Nếu A – B = C thì A = B + C; ngược lại, nếu A = B + C thì A – B = C.
Chẳng hạn, M + 5x3y – xy2 + 2y – 1 = x3y + 2xy2 – 3y + 2
Thì M = x3y + 2xy2 – 3y + 2 – (5x3y – xy2 + 2y – 1)
M = x3y + 2xy2 – 3y + 2 – 5x3y + xy2 – 2y + 1
M = (x3y – 5x3y) + (2xy2 + xy2) + (– 3y – 2y) + (2 + 1)
M = – 4x3y + 3xy2 – 5y + 3.
Bài tập Phép cộng và phép trừ đa thức
Bài 1. Tính tổng và hiệu của hai đa thức:
P = 2x2y – x3 + xy2 – 7 và Q = x3 – xy2 + 2xy + 3x2y + 6.
Hướng dẫn giải
P + Q = (2x2y – x3 + xy2 – 7) + (x3 – xy2 + 2xy + 3x2y + 6)
= 2x2y – x3 + xy2 – 7 + x3 – xy2 + 2xy + 3x2y + 6
= (2x2y + 3x2y) + (– x3 + x3) + (xy2 – xy2) + (– 7 + 6) + 2xy
= 5x2y – 1 + 2xy
P – Q = (2x2y – x3 + xy2 – 7) – (x3 – xy2 + 2xy + 3x2y + 6)
= 2x2y – x3 + xy2 – 7 – x3 + xy2 – 2xy – 3x2y – 6
= (2x2y – 3x2y) + (– x3 – x3) + (xy2 + xy2) + (– 7 – 6) – 2xy
= – x2y – 2x3 + 2xy2 – 13 – 2xy.
Bài 2. Cho ba đa thức:
M = 5x3 + 4x2y – 3x + y; N = 6xy + 3x – 2; P = 4x3 – 2x2y + 6x + 1.
a) Tính M + N – P.
b) Tính M – N + P.
Hướng dẫn giải
a) M + N – P = (5x3 + 4x2y – 3x + y) + (6xy + 3x – 2) – (4x3 – 2x2y + 6x + 1)
= 5x3 + 4x2y – 3x + y + 6xy + 3x – 2 – 4x3 + 2x2y – 6x – 1
= (5x3 – 4x3) + (4x2y + 2x2y) + (– 3x + 3x – 6x) + y + 6xy + (– 2 – 1)
= x3 + 6x2y – 6x + y + 6xy – 3.
b) M – N + P = (5x3 + 4x2y – 3x + y) – (6xy + 3x – 2) + (4x3 – 2x2y + 6x + 1)
= 5x3 + 4x2y – 3x + y – 6xy – 3x + 2 + 4x3 – 2x2y + 6x + 1
= (5x3 + 4x3) + (4x2y – 2x2y) + (– 3x – 3x + 6x) + y – 6xy + (2 + 1)
= 9x3 + 2x2y + y – 6xy + 3.
Bài 3. Cho:
A – 6x2 + xyz = xy + 3x2 + 5xyz – 2;
5x2 – 2x3y + 7x3y2 – 8 – B = – x3y2 + 2x3y + 3xy2 – 5x2 + 2y;
a) Tìm đa thức A, B.
b) Tính giá trị của đa thức A và B tại x = 0; y = – 1; z = 2.
Hướng dẫn giải
a)
A – 6x2 + xyz = xy + 3x2 + 5xyz – 2
A = xy + 3x2 + 5xyz – 2 – (– 6x2 + xyz)
A = xy + 3x2 + 5xyz – 2 + 6x2 – xyz
A = xy + (3x2 + 6x2) + (5xyz – xyz) – 2
A = xy + 9x2 + 4xyz – 2
Vậy đa thức A = xy + 9x2 + 4xyz – 2.
5x2 – 2x3y + 7x3y2 – 8 – B = – x3y2 + 2x3y + 3xy2 – 5x2 + 2y
B = (5x2 – 2x3y + 7x3y2 – 8) – (– x3y2 + 2x3y + 3xy2 – 5x2 + 2y)
B = 5x2 – 2x3y + 7x3y2 – 8 + x3y2 – 2x3y – 3xy2 + 5x2 – 2y
B = (5x2 + 5x2) + (– 2x3y – 2x3y) + (7x3y2 + x3y2) – 8 – 3xy2 – 2y
B = 10x2 – 4x3y + 8x3y2 – 8 – 3xy2 – 2y
b)
Thay x = 0; y = – 1; z = 2 và đa thức A, ta được:
A = 0.(– 1) + 9.02 + 4.0.(– 1).2 – 2
A = – 2
Vậy A = – 2 tại x = 0; y = – 1; z = 2.
Thay x = 0; y = – 1; z = 2 và đa thức B, ta được:
B = 10.02 – 4.03.(– 1) + 8.03.(– 1)2 – 8 – 3.0.(– 1) 2 – 2.(– 1)
B = – 8 + 2
B = – 6
Vậy B = – 6 tại x = 0; y = – 1; z = 2.
Học tốt Phép cộng và phép trừ đa thức
Các bài học để học tốt Phép cộng và phép trừ đa thức Toán lớp 8 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 8 Kết nối tri thức hay khác:
Lý thuyết Toán 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Lý thuyết Toán 8 Bài 7: Lập phương của một tổng. Lập phương của một hiệu
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Kết nối tri thức
- Giải SBT Toán 8 Kết nối tri thức
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT