Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) - Kết nối tri thức

Với tóm tắt lý thuyết Toán 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.

Lý thuyết Trường hợp bằng nhau thứ hai và thứ ba của tam giác

1. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)

• Trong tam giác ABC, góc BAC (hay góc A) được gọi là góc xen giữa của hai cạnh AB và AC.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 1)

• Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Ví dụ:

+ Tam giác ABC và tam giác EFD có cạnh AB = EF = 5cm; AC = ED = 3cm; góc A là góc xen giữa của cạnh AB và AC, góc E là góc xen giữa của cạnh EF và ED; A^=E^=79°.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 2)

Khi đó ta có ΔABC=ΔEFD theo trường hợp cạnh góc cạnh (c.g.c)

2. Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (g.c.g)

• Trong tam giác ABC, hai góc ABC, ACB (hay góc B và góc C) được gọi là hai góc kề cạnh BC của tam giác ABC.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 3)

• Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Ví dụ

+ Tam giác ABC và tam giác EFD có B^=F^=37°; C^=D^=64°; góc B và góc C là hai góc kề của cạnh BC, góc F và góc D là hai góc kề của cạnh FD; cạnh BC = FD = 6cm.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 4)

Khi đóta có <ΔABC=ΔEFDtheo trường hợp góc cạnh góc (g.c.g)

Bài tập Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Bài 1. Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 5)

Hướng dẫn giải

a) Hai tam giác AED và CEB có:

AE = CE

AED^=CEB^(hai góc đối đỉnh)

DE = BE

Do đó ΔAED=ΔCEB(c.g.c)

b) Hai tam giác QGH và QIH có:

GQH^=IQH^

QH là cạnh chung

GHQ^=IHQ^

Do đó ΔQGH=ΔQIH(g.c.g)

Bài 2. Cho hình vẽ dưới đây, biết CE = DE và CEA^=DEA^.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 6)

Chứng minh rằng:

a) ΔAEC=ΔAED;

b) ΔABC=ΔABD.

Hướng dẫn giải

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 7)

a) Xét ΔAECΔAED có:

CE = DE (theo giả thiết)

CEA^=DEA^ (theo giả thiết)

AE là cạnh chung

Do đó ΔAEC=ΔAED (c.g.c)

b) Vì ΔAEC=ΔAED (theo câu a)

⇒ AC = AD (2 cạnh tương ứng) và CAE^=DAE^ (2 góc tương ứng)

Xét ΔABCΔABD có:

AC = AD (chứng minh trên)

CAE^=DAE^ (chứng minh trên)

AB là cạnh chung

Do đó ΔABC=ΔABD (c.g.c)

Bài 3. Cho hình vẽ dưới đây, biết đoạn thẳng JK song song và bằng đoạn thẳng ML.

Chứng minh rằng:

a) ΔJOK=ΔLOM

b) OP = OQ.

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 8)

Hướng dẫn giải

Trường hợp bằng nhau thứ hai và thứ ba của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 9)

a) Vì JK ML nên:

OJK^=OLM^ (2 góc so le trong)

OKJ^=OML^ (2 góc so le trong)

Xét ΔJOKΔLOM có:

OJK^=OLM^ (chứng minh trên)

JK = ML (theo giả thiết)

OKJ^=OML^ (chứng minh trên)

Do đó ΔJOK=ΔLOM (g.c.g)

b) Vì ΔJOK=ΔLOM (theo câu a)

⇒ KO = MO (2 cạnh tương ứng)

Xét ΔKOPΔMOQ có:

OKJ^=OML^ (chứng minh trên)

KO = MO (chứng minh trên)

KOP^=MOQ^ (2 góc đối đỉnh)

Do đó ΔKOP=ΔMOQ (g.c.g)

⇒ OP = OQ (2 cạnh tương ứng).

Học tốt Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Các bài học để học tốt Trường hợp bằng nhau thứ hai và thứ ba của tam giác Toán lớp 7 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác