Giải Toán 11 trang 14 Tập 1 Kết nối tri thức

Với Giải Toán 11 trang 14 Tập 1 trong Bài 1: Giá trị lượng giác của góc lượng giác Toán 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 14.

Luyện tập 7 trang 14 Toán 11 Tập 1: Tính các giá trị lượng giác của góc α, biết: cos α = 23 và π<α<3π2.

Lời giải:

π<α<3π2 nên sin α < 0. Mặt khác, từ sin2 α + cos2 α = 1 suy ra

sinα=1cos2α=1232=53.

Do đó, tanα=sinαcosα=5323=52 và cotα=1tanα=152=25=255.

HĐ7 trang 14 Toán 11 Tập 1: Nhận biết mối liên hệ giữa giá trị lượng giác của các góc đối nhau

Xét hai điểm M, N trên đường tròn lượng giác xác định bởi hai góc đối nhau (H1.12a).

HĐ7 trang 14 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

a) Có nhận xét gì về vị trí của hai điểm M, N đối với hệ trục Oxy. Từ đó rút ra liên hệ giữa: cos (– α) và cos α; sin (– α) và sin α.

b) Từ kết quả HĐ7a, rút ra liên hệ giữa: tan (– α) và tan α; cot (– α) và cot α.

Lời giải:

a) Giả sử M(xM; yM), N(xN; yN). 

Từ Hình 1.12a, ta thấy hai điểm M và N đối xứng với nhau qua trục hoành Ox, do đó ta có: xM = xN và yM = – yN.

Theo định nghĩa giá trị lượng giác của một góc, ta lại có:

cos α = xM và cos (– α) = xN. Suy ra cos (– α) = cos α.

sin α = yM và sin (– α) = yN. Suy ra sin α = – sin (– α) hay sin (– α) = – sin α.

b) Ta có: tanα=sinαcosα=sinαcosα=sinαcosα=tanα;

cotα=cosαsinα=cosαsinα=cosαsinα=cotα.

Vậy tan (– α) = – tan α; cot (– α) = – cot α.

Lời giải bài tập Toán 11 Bài 1: Giá trị lượng giác của góc lượng giác hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác