Hỗn số (tiếp theo) lớp 5 (Lý thuyết + Bài tập)
Bài viết Hỗn số (tiếp theo) Toán lớp 5 sẽ tóm tắt lại lý thuyết trọng tâm, cách giải các dạng bài tập giúp bạn học tốt môn Toán 5.
1. Phép cộng và phép trừ hỗn số
* Để thực hiện phép cộng và phép trừ hỗn số, ta có hai cách làm sau:
Cách 1: Chuyển hỗn số về phân số
+ Muốn cộng (hoặc trừ) hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi cộng (hoặc) trừ hai phân số vừa chuyển đổi.
Ví dụ: Thực hiện phép tính:
a) |
b) |
Lời giải:
a)
b)
Cách 2: Tách hỗn số thành phần nguyên và phần phân số, sau đó thực hiện phép cộng (trừ) phần nguyên và phép cộng (trừ) phần phân số.
Ví dụ: Thực hiện phép tính:
a) |
b) |
Lời giải:
a) = =
b) = =
2. Phép nhân và phép chia hỗn số
* Để thực hiện nhân (hoặc chia) hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi nhân (hoặc chia) hai phân số vừa chuyển đổi.
Ví dụ: Thực hiện phép tính:
a) |
b) |
Lời giải:
a) =
b)
3. So sánh hỗn số
* Để thực hiện so sánh hỗn số, ta có hai cách dưới đây:
Cách 1: Chuyển hỗn số về phân số: để so sánh hai hỗn số, ta chuyển hai hỗn số về dạng phân số rồi so sánh hai phân số vừa chuyển đổi.
Ví dụ: So sánh hai hỗn số: và
Lời giải:
Ta có: và
Quy đồng mẫu số hai phân số, ta có:
Vì nên
Cách 2: So sánh phần nguyên và phần phân số. Khi so sánh hai hỗn số:
- Hỗn số nào có phần nguyên lớn hơn thì hỗn số đó lớn hơn và ngược lại hỗn số nào có phần nguyên nhỏ hơn thì hỗn số đó nhỏ hơn
- Nếu hai phần nguyên bằng nhau thì ta so sánh phần phân số, hỗn số nào có phần phân số lớn hơn thì hỗn số đó lớn hơn.
Ví dụ: So sánh các hỗn số sau:
a) và |
b) và |
Lời giải:
a) và
Hỗn số có phần nguyên bằng 2 và hỗn số có phần nguyên bằng 3
Vì 2 < 3 nên .
b) và
Hai hỗn số có cùng phần nguyên nên ta so sánh phần phân số của hai hỗn số
Vì nên .
4. Bài tập tự luyện
Bài 1. Đúng ghi Đ, sai ghi S:
a)
b)
c)
d)
Bài 2. Tính:
a)
b)
c)
d)
Bài 3. Chuyển hỗn số thành phân số rồi thực hiện phép tính:
a)
b)
c)
d)
Bài 4. So sánh các hỗn số:
a)
b)
c)
d)
Bài 5. Chuyển các phân số sau thành hỗn số rồi thực hiện phép tính:
a)
b)
c)
d)
e)
f)
Xem thêm các bài tóm tắt lý thuyết, công thức Toán lớp 5 hay, chi tiết khác:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)