Cho lục giác đều ABCDEF cạnh bằng a. Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn
Bài 31 trang 93 SBT Toán 9 Tập 2: Cho lục giác đều ABCDEF cạnh bằng a.
a) Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn. Tính theo a bán kính của đường tròn đó.
b) Chứng minh các tam giác ACE, BFD là các tam giác đều. Tính theo a bán kính đường tròn nội tiếp tương ứng của các tam giác đó.
Lời giải:
a) ⦁ Vì ABCDEF là lục giác đều nên ba đường chéo chính AD, BE, CF bằng nhau và cắt nhau tại trung điểm O của mỗi đường, do đó OA = OB = OC = OD = OE = OF, nên sáu điểm A, B, C, D, E, F cùng thuộc đường tròn đường kính AD.
⦁ Vì ABCDEF là lục giác đều nên độ dài đường chéo chính AD gấp 2 lần độ dài cạnh, mà AD là đường kính của đường tròn đi qua sáu điểm A, B, C, D, E, F nên bán kính của đường tròn đi qua sáu điểm A, B, C, D, E, F bằng độ dài cạnh của lục giác đều và bằng a.
b) ⦁ Vì ABCDEF là lục giác đều nên các góc ở các đỉnh của lục giác đều bằng nhau, suy ra
Vì ABCDEF là lục giác đều nên các cạnh bằng nhau, suy ra AB = BC = CD = DE = EF = FA.
Xét ∆ABC và ∆CDE có:
AB = CD, BC = DE.
Do đó ∆ABC = ∆CDE (c.g.c)
Suy ra AC = CE (hai cạnh tương ứng).
Chứng minh tương tự, ta có kết quả AC = CE = AE = BD = DF = BF.
Do AC = CE = AE nên ∆ACE là tam giác đều.
Do BF = BD = DF nên ∆BFD là tam giác đều.
⦁ Gọi H là giao điểm của AC và OB.
Ta có OA = OB = AB = a nên ∆OAB là tam giác đều, do đó hay
Xét tứ giác OABC có OA = OC = AB = BC nên OABC là hình thoi, do đó hai đường chéo AC và OB vuông góc với nhau tại trung điểm H của mỗi đường.
Từ đó ta có AC = 2AH.
Xét ∆ABH vuông tại H, ta có:
Suy ra
Vì ∆ACE là tam giác đều nên bán kính đường tròn nội tiếp của ∆ACE là
Vì AC = CE = AE = BF = FD = BD nên ta có ∆ACE = ∆BFD (c.c.c).
Do đó bán kính đường tròn nội tiếp tương ứng của ∆ACE và ∆BFD bằng nhau, và bằng
Lời giải SBT Toán 9 Bài tập cuối chương 8 hay khác:
Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều