Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó
Bài 21 trang 91 SBT Toán 9 Tập 2: Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH, tiếp tục như vậy được tứ giác mới IKPQ (Hình 15).
Chứng minh:
a) Tứ giác EFGH và tứ giác IKPQ là các tứ giác nội tiếp đường tròn.
b) Tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.
Lời giải:
a) Do ABCD là hình vuông nên AB = BC = CD = DA và
Do E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA nên AE = EB = BF = FC = CG = GD = DH = HA.
Xét ∆AHE và ∆BFE có:
AH = BF, AE = BE
Do đó ∆AHE = ∆BFE (hai cạnh góc vuông).
Suy ra HE = FE (hai cạnh tương ứng).
Tương tự, ta chứng minh được HE = EF = FG = GH.
Khi đó, tứ giác EFGH là hình thoi.
Xét ∆AHE có và AH = AE nên ∆AHE vuông cân tại A, suy ra
Tương tự, ta có
Do đó
Như vậy, hình thoi EFGH là hình vuông. Suy ra EFGH nội tiếp đường tròn.
Chứng minh tương tự ta được tứ giác IKPQ là hình vuông và nội tiếp đường tròn.
b) ⦁ Xét ∆ABC vuông cân tại B (do và BA = BC) , theo định lí Pythagore, ta có:
AC2 = AB2 + BC2 = AB2 + AB2 = 2AB2.
Suy ra
Bán kính đường tròn ngoại tiếp hình vuông ABCD là:
⦁ Tương tự, với ∆AHE vuông cân tại A, ta có:
Với ∆HEF vuông cân tại E, ta có:
Bán kính đường tròn ngoại tiếp hình vuông EFGH là:
⦁ Chứng minh tương tự, ta có bán kính đường tròn ngoại tiếp hình vuông IKPQ là:
⦁ Ta có tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH là:
Tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ là:
Vậy tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.
Lời giải SBT Toán 9 Bài 2: Tứ giác nội tiếp đường tròn hay khác:
Bài 17 trang 90 SBT Toán 9 Tập 2: Cho tam giác ABC cân ở A, H là trung điểm của BC và ....
Bài 18 trang 91 SBT Toán 9 Tập 2: Cho và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc ....
Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều