Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm
Bài 14 trang 90 SBT Toán 9 Tập 2: Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Lời giải:
Giả sử trái lại có hai dây cung BD và AC (không đi qua tâm O) cắt nhau tại trung điểm mỗi đường. Suy ra tứ giác ABCD là hình bình hành.
Do đó
Mặt khác, tứ giác ABCD nội tiếp đường tròn (O) nên
Suy ra
Từ đó suy ra AC là đường kính của đường tròn (O) hay AC đi qua tâm O, mâu thuẫn với điều đã giả sử.
Vậy trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Lời giải SBT Toán 9 Bài 2: Tứ giác nội tiếp đường tròn hay khác:
Bài 12 trang 90 SBT Toán 9 Tập 2: Tìm phát biểu sai trong các phát biểu sau ....
Bài 17 trang 90 SBT Toán 9 Tập 2: Cho tam giác ABC cân ở A, H là trung điểm của BC và ....
Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Cánh diều
- Giải SBT Toán 9 Cánh diều
- Giải lớp 9 Cánh diều (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều