Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng

Bài 4.46 trang 69 sách bài tập Toán lớp 7 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:

a) ∆AEB và ∆DEC là các tam giác cân đỉnh E.

b) AB // CD.

Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng

Lời giải:

a) Xét tam giác vuông ADB và tam giác vuông BCA có:

AB: cạnh huyền chung

AD = CB (gt)

Do đó, ∆ADB = ∆BCA (cạnh huyền – cạnh góc vuông).

Suy ra DBA^=CAB^, hay EBA^=EAB^.

Khi đó tam giác EAB cân tại đỉnh E.

Xét tam giác vuông ADE và tam giác vuông BCE có:

AD = CB (gt)

EA = EB (∆EAB cân tại đỉnh E)

Do đó, ∆ADE = ∆BCE (cạnh huyền – cạnh góc vuông).

Suy ra ED = EC.

Do đó, tam giác EDC cân tại đỉnh E.

b) Theo định lí tổng 3 góc trong tam giác EAB, ta có:

EBA^+EAB^+AEB^=180°

EBA^=EAB^ (chứng minh trên)

Suy ra EBA^=180°-AEB^2.       (1)

Theo định lí tổng 3 góc trong tam giác EDC, ta có:

EDC^=ECD^+DEC^=180°

EDC^=ECD^ (∆ECD cân tại đỉnh E).

Suy ra EDC^=180°-DEC^2.       (2)

Ta lại có: AEB^=DEC^ (hai góc đối đỉnh).     (3)

Từ (1), (2) và (3) suy ra EBA^=EDC^, hay DBA^=BDC^.

Mà hai góc này ở vị trí so le trong.

Vậy AB // DC.

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Kết nối tri thức khác