Bài 20 trang 19 SGK Toán 9 Tập 2



Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Video Bài 20 trang 19 SGK Toán 9 Tập 2 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Bài 20 (trang 19 SGK Toán 9 Tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Vì hệ số của y ở 2 pt đối nhau nên cộng từng vế của 2 pt).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x ở 2 pt bằng nhau nên ta trừ từng vế của 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân cả hai vế của pt 2 với 2 để hệ số của x bằng nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x bằng nhau nên ta trừ từng vế của 2 pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên cộng từng vế hai phương trình).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 4 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên ta cộng từng vế 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

Tham khảo các lời giải Toán 9 Bài 4 khác:

Tham khảo các lời giải Toán 9 Chương 3 khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


giai-he-phuong-trinh-bang-phuong-phap-cong-dai-so.jsp


Giải bài tập lớp 9 sách mới các môn học