Toán 9 Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn.
Video Giải bài tập Toán 9 Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)
Lời giải
Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)
BC ⊥ AH tại H
⇒ BC là tiếp tuyến của đường tròn (A; AH)
Trả lời câu hỏi Toán 9 Tập 1 Bài 5 trang 111 : Hãy chứng minh cách dựng trên là đúng.
Lời giải
Ta có: MA = MO = MB ( cùng bằng bán kính đường tròn tâm M, bán kính MO)
MA = MB ⇒ ΔMAB cân tại M ⇒ ∠(BAO) = ∠(ABM)
MO=MB⇒ΔMOB cân tại M ⇒∠(BOA) = ∠(MBO)
⇒∠(BAO) + ∠(BOA) = ∠(ABM) + ∠(MBO) = ∠(ABO) (1)
Mặt khác ta lại có: ∠(BAO) + ∠(BOA) + ∠(ABO) = 180o (2) (tổng 3 góc trong tam giác)
Từ (1) và (2) ⇒ ∠(ABO) = 90o
Hay AB là tiếp tuyến của (O)
Chứng minh tương tự, ta được AC là tiếp tuyến của (O)
Ta có: AB2 + AC2 = 32 + 42 = 25
BC2 = 52 = 25
Nên AB2 + AC2 = BC2
=> tam giác ABC vuông tại A hay AC ⊥ BA.
Đường thẳng AC đi qua điểm A của đường tròn và vuông góc với bán kính BA đi qua điểm A nên AC là tiếp tuyến của đường tròn.
Đường tròn (O) tiếp xúc với d nên d là tiếp tuyến của (O) hay d vuông góc với bán kính của (O) tại tiếp điểm A. Suy ra tâm O của đường tròn nằm trên đường thẳng vuông góc với d tại A.
Lại có (O) qua B nên tâm O của đường tròn nằm trên đường trung trực của AB.
Vậy tâm O là giao điểm của đường vuông góc với d tại A và đường trung trực của AB.
Hình 76
Lời giải:
Từ hình vẽ, đường tròn (A) và (C) nằm cùng một phía (về bên dưới) so với sợi dây nên có cùng chiều quay, còn đường tròn (B) nằm ở khác phía (bên trên).
=> đường tròn (A) và (C) quay ngược chiều với (B).
Khi dây cua-roa chuyển động, đường tròn (B) quay ngược chiều của kim đồng hồ nên đường tròn (A) và (C) có cùng chiều quay của kim đồng hồ.
a) Chứng minh rằng CB là tiếp tuyến của đường tròn.
b) Cho bán kính của đường tròn bằng 15cm, AB = 24 cm. Tính độ dài OC.
Lời giải:
a) Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:
Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)
⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)
b) Ta có: OH vuông góc AB nên H là trung điểm của AB (quan hệ vuông góc giữa đường kính và dây)
Vậy OC = 25 cm
a) Tứ giác OCAB là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R.
Lời giải:
a) Bán kính OA vuông góc với BC nên MB = MC.
Lại có MO = MA (gt).
Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.
Lại có: OA ⊥ BC nên OBAC là hình thoi.
b) Ta có: OA = OB (bán kính)
OB = BA (tính chất hình thoi).
Nên OA = OB = BA => ΔAOB đều => ∠AOB = 60o
Trong tam giác OBE vuông tại B ta có:
BE = OB.tg∠AOB = OB.tg60o = R.√3
Xem thêm các bài Giải bài tập Toán lớp 9 hay và chi tiết khác:
- Bài 6: Tính chất của hai tiếp tuyến cắt nhau
- Luyện tập trang 116
- Bài 7: Vị trí tương đối của hai đường tròn
- Bài 8: Vị trí tương đối của hai đường tròn (tiếp theo)
- Luyện tập trang 123
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều