Chứng tỏ rằng nếu phương trình ax^2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax^2 + bx + c



Bài 6: Hệ thức Vi-ét và ứng dụng

Luyện tập trang 54 sgk Toán lớp 9 Tập 2

Video Bài 33 trang 54 SGK Toán 9 Tập 2 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Bài 33 trang 54 SGK Toán lớp 9 Tập 2: Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2 + bx + c = a( x - x1)(x - x2)

Áp dụng : phân tích đa thức thành nhân tử.

a) 2x2 - 5x + 3;    b)3x2 + 8x + 2

Lời giải

* Chứng minh:

Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

= Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

= a.x2 + bx + c (đpcm).

* Áp dụng:

a) 2x2 – 5x + 3 = 0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) 3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xem thêm các bài giải bài tập Toán lớp 9 Bài 6 khác:


bai-6-he-thuc-viet-va-ung-dung.jsp


Giải bài tập lớp 9 sách mới các môn học