Bộ 21 Đề thi Toán 8 Giữa học kì 1 năm 2024 tải nhiều nhất

Tuyển chọn Bộ 21 Đề thi Toán 8 Giữa học kì 1 năm 2024 tải nhiều nhất chọn lọc được các Giáo viên nhiều năm kinh nghiệm biên soạn và sưu tầm từ Đề thi Toán 8 của các trường THCS. Hi vọng bộ đề thi này sẽ giúp học sinh ôn tập và đạt kết quả cao trong các bài thi Giữa Học kì 1 môn Toán lớp 8.

Để mua trọn bộ Đề thi Toán 8 bản word có lời giải chi tiết, đẹp mắt, quý Thầy/Cô vui lòng xem thử:

Phòng Giáo dục và Đào tạo .....

Đề thi Giữa Học kì 1

Năm học 2024 - 2025

Bài thi môn: Toán lớp 8

Thời gian làm bài: 90 phút

(không kể thời gian phát đề)

(Đề số 1)

Bài 1. Rút gọn:

a) -2x(-3x +2)- (x+2)2

b) (x+2)(x2- 2x+4) -2( x+1)( 1-x)

c) (2x-1)2- 2(4x2-1) + (2x+1)2

Bài 2. Phân tích các đa thức sau thành nhân tử:

a) 4x2- 4xy+ y2

b) 9x3-9x2y - 4x + 4y

c) x2+ 2 + 3(x2-2)

Bài 3.

a) Tìm x biết  2(x-2) = x2 -4x + 4

b) Chứng minh rằng với bất kì bộ ba số tự nhiên liên tiếp nào thì tích của số thứ nhất và số thứ ba cũng bé hơn bình phương của số thứ hai 1 đơn vị.

Bài 4. Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. M, N, P lần lượt là trung điểm của AB, AC và BC. I là giao điểm của AH và MN.

a.Chứng minh MN là đường trung trực của AH.

b.Kéo dài PN một đoạn NQ = NP. Xác định dạng tứ giác ABPQ.

c.Xác định dạng tứ giác MHPN.

d. K là trung điểm của MN. Chứng minh B, K, Q thẳng hàng.    

Bài 5. Tìm giá trị nhỏ nhất của biểu thức . 

A = a4 - 2a+ 2a2 -2a + 2

Phòng Giáo dục và Đào tạo .....

Đề thi Giữa Học kì 1

Năm học 2024 - 2025

Bài thi môn: Toán lớp 8

Thời gian làm bài: 90 phút

(không kể thời gian phát đề)

(Đề số 2)

   Câu 1. Phân tích các đa thức sau thành nhân tử:

a) 3x2-6x                             b) x2-2x + 1- y2

c) 9x2- 9x2y - 4x + 4y          d) x2 -2x2 - 8x

   Câu 2. Tìm x, biết:

a) x( x-1) -x2 + 2x =5                       b) 4x2-36x = 0

c) 2x2- 2x = (x -1)2                           d) (x- 7)( x2-9x + 20) (x-2) = 72

  Câu 3. 

a) Thực hiện phép tính chia đa thức sau: 

f(x) = 2x4- 3x2+3x -2  cho đa thức  g(x) = x2-1

b) Cho hai đa thức A(x)= 2x2 + 3x2 -x + m và  B(x) = 2x+1

Tìm m để A(x) chia hết cho  B(x).

Câu 4. Cho tam giác  ABC  có ba góc nhọn , đường cao AH Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, MN cắt AH tại I.

a) Chứng minh I là trung điểm của AH

b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành 

c) Xác định dạng của tứ giác MHPN 

d) Gọi K là trung điểm của MN , O là giao điểm của CK và OP , F là giao điểm của CK và QP Chứng minh B, O, F thẳng hàng.

Bài 5: Cho các số x,y thỏa mãn điều kiện x2-2xy+ 6y2- 12x + 12y + 41= 0

Tính giá trị biểu thức: Đề thi Toán 8 Giữa học kì 1 năm 2024 Đề 2

Phòng Giáo dục và Đào tạo .....

Đề thi Giữa Học kì 1

Năm học 2024 - 2025

Bài thi môn: Toán lớp 8

Thời gian làm bài: 90 phút

(không kể thời gian phát đề)

(Đề số 3)

Bài 1. (2 điểm) Rút gọn các biểu thức:

a)  (x+2)2- (x+3)(x-3) +10                     b) (x+5)(x2-5x + 25)- x(x- 4)2 + 16x

c) (x-2y)2 - (x+2y)( x2-2xy + 4y2) + 6x2y

Bài 2. (2,0 điểm) Phân tích đa thức thành nhân tử:

a)  8x2y - 8xy + 2x                                       b) x2 - 6x - y2 + 9

c) (x2 + 2x) ( x2+ 4x + 3) -24

Bài 3. (2 điểm) Tìm x, biết:

a) ( x+3)2 - (x+2)(x-2) = 4x + 17

b) ( x-3)( x2+ 3x + 9) - x( x2- 4)= 1

c) 3x2 + 7x = 10

Bài 4. (3 điểm) Cho hình bình hành ABCD. Trên đường chéo BD lấy 2 điểm M và N sao cho BM= DN= Đề thi Toán 8 Giữa học kì 1 năm 2024 Đề 3BD

  a) Chứng minh rằng: Đề thi Toán 8 Giữa học kì 1 năm 2024 Đề 3

b) AC cắt BD tại O. Chứng minh tứ giác AMCN là hình bình hành.

c) AM cắt BC tại I. Chứng minh: AM = 2MI

d) CN cắt AD tại K. Chứng minh: I và K đối xứng với nhau qua O

Bài 5 (1 điểm)

a) Tìm GTLN của biểu thức:   A= 5+ 2xy+ 14y - x2- 5y2 -2x

b) Tìm tất cả số nguyên dương n sao cho B= 2n + 3n + 4n là số chính phương.

Phòng Giáo dục và Đào tạo .....

Đề thi Giữa Học kì 1

Năm học 2024 - 2025

Bài thi môn: Toán lớp 8

Thời gian làm bài: 90 phút

(không kể thời gian phát đề)

(Đề số 4)

Bài 1. (2 điểm) Thực hiện phép tính:

a) 3x2( 2x2-5x -4)                    b) (x+1)2 + (x-2)(x+3) -4x

Bài 2. (2,0 điểm) Phân tích đa thức thành nhân tử

a)  7x2 + 14xy                    b)3( x+4) -x2- 4x

c) x2-2xy + y2 -z2                    d) x2-2x -15

Bài 3. (2,0 điểm) Tìm x:

a) 7x2 + 2x                    b) x( x+4)- x2- 6x =10

c) x( x-1) + 2x -2 =0                    d) ( 3x-1)2 - ( x+5)2 = 0

Bài 4. (3,5 điểm)

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.

a) Chứng minh: Tứ giác BHCK là hình bình hành.

b) Chứng minh:  BK ⊥ AB và CK ⊥ AC

c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì đề tứ giác GHCK là hình thang cân.

Bài 5. (0,5 điểm) 

Chứng minh rằng: Đề thi Toán 8 Giữa học kì 1 năm 2024 Đề 4 với mọi Đề thi Toán 8 Giữa học kì 1 năm 2024 Đề 4

Phòng Giáo dục và Đào tạo .....

Đề thi Giữa Học kì 1

Năm học 2024 - 2025

Bài thi môn: Toán lớp 8

Thời gian làm bài: 90 phút

(không kể thời gian phát đề)

(Đề số 5)

Câu 1:

a) A = x(4-x) + ( x-2)2

b) B = (x+5)2 - (x-5)2

c) C = (x-2)(2x+3) - 2x(x-1) -( x-10)

d) D = (x+y)3 - 3xy(x+y) -x3 + y3

Câu 2. Phân tích đa thức thành nhân tử:

a) (x- 4)2 - 9                       b) 5x + 5y - x2 -2xy -y2

c) x2 + 4x - 5                       d) x4 + 4

Câu 3. Tìm x biết:

a) 5(x+2) + x(x+2) = 0

b) (3x-1)2 - 9x2 + 3= 0

c) (x+3)( x2 -3x +9) -x(x2-9) = 27

Câu 4. Cho hình bình hành MNPQ (MN> PQ) . Lấy điểm A trên canh MN, điểm B trên cạnh PQ sao cho AM= BP

a) Chứng minh rằng: MB// AP , MB=AP .

b) Chứng minh rằng MP ,NQ ,AB  đồng quy tại một điểm I .

c) Gọi H là giao điểm của MB và NQ . Tìm vị trí của A , B trên 2 cạnh MN , PQ của hình bình hành MNPQ để H là trọng tâm của tam giác MPQ .

d) Gọi C là giao điểm của 2 đường phân giác góc QMN và góc MOP; là giao điểm của 2 đường phân giác góc MNP và QPN. Chứng minh: C,I ,E thẳng hàng.

Câu 5.

a) Cho a, b, c > 0 thỏa mãn 

a2020+ b2020 + c2020= a1010b1010 + b1010c1010 + c1010a1010

 Tính giá trị của biểu thức sau A= (a-b)20 + (b-c)33 +(c-a)2020

b) Chứng minh rằng với mọi x ∈ Q thì giá trị của biểu thức

A= (x+1)(x+2)(x+3)(x+4) +1  là bình phương của một số hữu tỷ?

................................

................................

................................

Trên đây tóm tắt một số nội dung miễn phí trong bộ Đề thi Toán 8 năm 2024 mới nhất, để mua tài liệu trả phí đầy đủ, Thầy/Cô vui lòng xem thử:

Xem thêm bộ Đề thi Toán 8 năm học 2024 - 2025 chọn lọc khác:


Giải bài tập lớp 8 sách mới các môn học