Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 (cực hay, có đáp án)



Bài viết Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng cực.

    Cho điểm M(x0; y0 ) và đường thẳng (d) có phương trình:

    y = ax + b. Khi đó:

    M ∈ (d) ⇔ y0 = ax0 + b;

    M ∉ (d) ⇔ y0 ≠ ax0 + b.

Ví dụ 1: Cho hàm số y = (2m - 1)x + m + 1 với m ≠ 1/2. Hãy xác định m trong mỗi trường hợp sau:

    a) Đồ thị hàm số đi qua M(-1; 1)

    b) Đồ thị hàm số không đi qua điểm N (1; 3)

Lời giải:

    a) Đồ thị đi qua điểm M (-1; 1) nên

    1 = (2m - 1)(-1) + m + 1 ⇔ m = 1

    Vậy với m = 1 thì đồ thị hàm số đi qua điểm M (-1; 1).

    b) Đồ thị hàm số không đi qua điểm N (1; 3) nên:

    3 ≠ (2m - 1).1 + m + 1 ⇔ 3m ≠ 3 ⇔ m ≠ 1.

Ví dụ 2: Cho đường thẳng (d): y = -2x + 3. Tìm m để đường thẳng (d) đi qua điểm A (-m; -3).

Lời giải:

    Đường thẳng (d): y = -2x + 3 đi qua điểm A (-m; -3) khi:

    -3 = -2.(-m) + 3 ⇔ 2m = -6 ⇔ m = -3.

    Vậy đường thẳng (d): y = -2x + 3 đi qua điểm A (-m; -3) khi m = -3.

Ví dụ 3: Chứng minh rằng đường thẳng (d): (m + 2)x + y + 4m - 3 = 0 luôn đi qua một điểm cố định với mọi giá trị của m.

Lời giải:

    Gọi điểm M(x0; y0 ) là điểm cố định mà (d) luôn đi qua, ta có:

    (m + 2) x0 + y0 + 4m - 3 = 0

    ⇔ m(x0 + 4) + (2x0 + y0 - 3) = 0

    Đường thẳng (d) luôn đi qua M(x0; y0 ) với mọi m khi và chỉ khi:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy điểm cố định mà (d) luôn qua với mọi giá trị của m là M (-4; 11).

Bài 1: Cho đường thẳng (d): y = -3x + 1. Trong các điểm M(-1; 2), N(0; -1), P(1/3; 0), hãy xác định các điểm thuộc và không thuộc đường thẳng (d).

Bài 2: Cho đường thẳng (d): y = (m + 2)x + 3m - 1. Tìm m để đường thẳng (d) đi qua điểm M (-2; 3).

Lời giải:

Bài 1:

    M(-1; 2) ∉ (d) vì khi x = -1 thì -3.(-1) + 1 = 4 ≠ 2

    N(0;1) ∈ (d) vì khi x = 0 thì -3.0 + 1 = 1

    P(1/3;0) ∈ (d) vì khi x = 1/3 thì (-3).1/3 + 1 = 0.

Bài 2:

    M(-2; 3) ∈ (d): y = (m + 2)x + 3m - 1 khi:

    3 = (m + 2).(-2) + 3m - 1 ⇔ 3 = -2m - 4 + 3m - 1

    ⇔ m = 8.

    Vậy đường thẳng (d): y = (m + 2)x + 3m - 1 đi qua điểm M khi m = 8.

Bài 1. Cho đường thẳng d: y = (2m – 3)x.

a) Với giá trị nào của m thì điểm A(– 1; 5) thuộc đường thẳng d;

b) Tìm m để đường thẳng nhận giá trị bằng – 3 tại x = 2.

Bài 2. Cho đường thẳng d1: -2x-12y=54+2 và d2: -2x-y=(1+3)2. Trong các điểm M(-58;-4),N(0;-4-23),K(3-1;2) thì điểm nào thuộc hai đường thẳng?

Bài 3. Cho hàm số y = (m2 – 3)x + 2 có đồ thị là đường thẳng d.

a) Vẽ d khi m = 2;

b) Tìm m để hàm số đồng biến, nghịch biến;

c) Tìm m để d đi qua A(1; 2);

d) Với m = 2 thì điểm B(– 5; 3) có thuộc đường thẳng d.

Bài 4. Hãy xác định hệ số a và b của đường thẳng d: y = ax + b biết rằng hai điểm A(– 1; 2), B(2; – 3) thuộc đường thẳng.

Bài 5. Cho đường thẳng d: y = mx + 3 biết d đi qua điểm M(-3;0).

a) Hệ số góc bằng bao nhiêu;

b) Tính góc tạo bởi tia Ox và d.

Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:


chuong-2-ham-so-bac-nhat.jsp


Giải bài tập lớp 9 sách mới các môn học