Bài tập Hàm số bậc nhất (có lời giải chi tiết)
Bài viết Hàm số bậc nhất với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Hàm số bậc nhất.
Bài 1: Cho hai hàm số
a) Tìm tập xác định của hàm số đã cho
b) Tính f(2); f(1/2), g(0), g(1), g(1/2)
Bài 2: Cho hàm số y = -mx + m - 3. Biết f(-2) = 6. Tính f(-3)
Bài 3: Xác định tính đồng biến, nghịch biến của các hàm số sau:
a) y = f(x) = (1 - √2)x + 1, với x ∈ R
b) với x ≥ 2
c) y = f(x) = x2 + 2,với x < 0
Bài 4: Cho hàm số y = (2m + 1)x - m + 3
a) Tìm m biết đồ thị đi qua điểm A(-2; 3)
b) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m
Bài 5: Xác định đường thẳng đi qua hai điểm A(-2; 0) và B(0; 3)
Bài 6: Với giá trị nào của m thì đồ thị các hàm số y = 2x + 4 - m và y = 3x + m - 2 cắt nhau tại một điểm trên trục tung
Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2
a) Xác định giá trị của m để hàm số đồng biến, nghịch biến
b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.
Bài 8: Cho hai đường thẳng
(d1 ): y = 12x + 5 - m; (d2 ): y = 3x + 3 + m
Xác định m để giao điểm của (d1 ) và (d2 ) thỏa mãn
a) Nằm trên trục tung
b) Nằm bên trái trục tung
c) Nằm trong góc phần tư thứ hai.
Bài 9: Cho đường thẳng (d):y = (m - 3)x + 3m + 2. Tìm giá trị nguyên của m để (d) cắt trục hoành tại điểm có hoành độ nguyên.
Đáp án và hướng dẫn giải
Bài 1:
a) Hàm số xác định khi x - 2 ≥ 0 ⇔ x ≥ 2
Hàm số xác định khi
b) f(2) = 0;
f(1/2) không xác định (do 1/2 không thỏa mãn ĐKXĐ)
g(0) = 1; g(1) = 1; g(1/2) = √2
Bài 2:
y = -mx + m - 3.
Ta có: f(-2) = -m.(-2) + m - 3 = 6 ⇔ 3m - 3 = 6 ⇔ m = 3
Khi đó y = f(x) = -3x
⇒ f(-3) = -3.(-3) = 9
Bài 3:
a) , với x ∈ R
Hàm số trên là hàm bậc nhất có hệ số a=1-√2 < 0
⇒ Hàm số nghịch biến trên R
b) y = f(x) = ⇒ (x -2 ) với x ≥ 2
Lấy x1, x2 tùy ý thuộc đoạn [2; +∞) sao cho x1 > x2
Khi đó:
⇒ Hàm số đồng biến trên [2; +∞)
c) y = f(x) = x2 + 2, với x < 0
Lấy x1, x2 tùy ý thuộc đoạn (-∞;0) sao cho x1 > x2
⇒ x12 < x22 ⇒ x12 + 2 < x22 + 2 ⇒ f(x1 ) < f(x2 )
⇒ Hàm số nghịch biến trên (-∞;0)
Bài 4: y = (2m + 1)x - m + 3
a) Đồ thị đi qua điểm A(-2; 3)
⇒ 3 = (2m + 1).(-2) - m + 3
⇔ 5m = -2 ⇔ m = (-2)/5
b) Gỉa sử điểm cố định mà đồ thị hàm số đi qua với mọi m là (x0; y0 )
Khi đó: y0 = (2m + 1) x0 - m + 3 đúng với mọi m
⇔ m(2x0 - 1) + 3 + x0 - y0 = 0 đúng với mọi m
Vậy điểm cố định là (1/2; 7/2)
Bài 5:
Gỉa sử đường thẳng đi qua hai điểm A và B là y = ax + b
A(-2; 0) ∈ AB ⇒ 0 = -2a + b ⇒ b = 2a
A(0; 3) ∈ AB ⇒ 3 = a.0 + b ⇒ b = 3
⇒ a = b/2 = 3/2
Vậy phương trình đường thẳng AB là y = (3/2)x + 3
Bài 6:
Hoành độ giao điểm của 2 đường thẳng trên là nghiệm của phương trình
2x + 4 - m = 3x + m - 2 ⇔ x = 2m - 6
Hai đường thẳng trên cắt nhau tại một điểm trên trục tung nên hoành độ giao điểm bằng 0
⇒ 2m - 6 = 0 ⇔ m = 3
Vậy với m = 3 thì hai đường thẳng trên cắt nhau tại điểm nằm trên trục tung.
Bài 7:
Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2
a) Hàm số đồng biến ⇔ m - 2 > 0 ⇔ m > 2
Hàm số nghịch biến ⇔ m - 2 < 0 ⇔ m < 2
b) Cho x = 0 ⇒ y = m + 3, đồ thị cắt trục tung tại điểm A(0, m + 3)
Cho y = 0 ⇒ (m - 2)x + m + 3 = 0 ⇒
Đồ thị cắt trục hoành tại điểm
⇔ (m + 3)2 = 2|m - 2|
TH1: m < 2, khi đó phương trình tương đương với:
(m + 3)2 = 4 - 2m
⇔ m2 + 8m + 5 = 0
⇔ (m + 4)2 = 11
⇔ m = -4 ± ⇒ 11
TH2: m > 2 phương trình tương đương với
(m + 3)2 = 2m - 4
⇔ m2 + 4m + 13 = 0
⇔ (m + 2)2 + 9 = 0
⇒ không tồn tại m
Vậy với m = -4 + ⇒ 11 và m = -4 - ⇒ 11 thì đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.
Bài 8:
(d1 ): y = 12x + 5 - m; (d2 ): y = 3x + 3 + m
Hoành độ giao điểm của (d1 ) và (d2 ) là nghiệm của phương trình
12x + 5 - m = 3x + 3 + m ⇔ 9x = 2m - 2
⇒ Tọa độ giao điểm là
a) Giao điểm của (d1) và (d2) nằm trên trục tung
⇔ hoành độ giao điểm của (d1) và (d2) bằng 0.
⇔ 2m - 2 = 0 ⇔ m = 1
b) Giao điểm của (d1 ) và (d2 ) nằm bên trái trục tung
⇔ hoành độ giao điểm của (d1 ) và (d2 ) nhận giá trị âm
⇔2m - 2 < 0 ⇔ m < 1
c) Giao điểm của (d1) và (d2) nằm trong góc phần tư thứ hai.
⇔ hoành độ giao điểm nhận giá trị âm và tung độ giao điểm nhận giá trị dương.
Bài 9:
(d): y = (m - 3)x + 3m + 2.
ĐK để (d) cắt Ox là m ≠ 3
Cho y = 0 ⇒ (m - 3)x + 3m + 2 = 0
⇒ (d)cắt trục hoành tại điểm có hoành độ
x ∈ Z ⇔ m - 3 ∈ Ư(11) ⇔ m ∈ {4; 14; 2; -8}
Vậy với m ∈ {4;14;2; -8} thì (d) cắt trục hoành tại điểm có hoành độ nguyên.
Chuyên đề Toán 9: đầy đủ Lý thuyết và các dạng bài tập có đáp án khác:
- Lý thuyết Hàm số bậc nhất
- Dạng 1: Tìm tập xác định của hàm số
- Dạng 2: Cách xác định hàm số bậc nhất
- Dạng 3: Cách xác định điểm thuộc đường thẳng, điểm không thuộc đường thẳng
- Dạng 4: Cách xác định đường thẳng
- Bài tập tổng hợp Hàm số bậc nhất (có đáp án)
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều