Lý thuyết Vectơ trong không gian lớp 11 (hay, chi tiết)
Bài viết Lý thuyết Vectơ trong không gian lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Vectơ trong không gian.
Bài giảng: Bài 1 : Vectơ trong không gian - Thầy Lê Thành Đạt (Giáo viên VietJack)
Cho đoạn thẳng AB trong không gian. Nếu ta chọn điểm đầu là A, điểm cuối là B ta có một vectơ, được kí hiệu là AB→.
Định nghĩa
Vectơ trong không gian là một đoạn thẳng có hướng. Kí hiệu AB→ chỉ vectơ có điểm đầu là A, điểm cuối B. Vectơ còn được kí hiệu là a→, b→, x→, y→, …
Các khái niệm có liên quan đến vectơ như giá của vectơ, độ dài của vectơ, sự cùng phương, cùng hướng của hai vectơ, vectơ – không, sự bằng nhau của hai vectơ, … được định nghĩa tương tự như trong mặt phẳng.
1. Khái niệm về sự đồng phẳng của ba vectơ trong không gian
Trong không gian cho ba vectơ a→, b→, c→ đều khác vectơ – không. Nếu từ một điểm O bất kì ta vẽ OA→ = a→, OB→ = b→, OC→ = c→ thì có thể xả ra hai trường hợp:
+ Trường hợp các đường thẳng OA, OB, OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng vectơ a→, b→, c→ không đồng phẳng.
+ Trường hợp các đường thẳng OA, OB, OC cùng nằm trong một mặt phẳng thi ta nói ba vectơ a→, b→, c→ đồng phẳng.
Trong trường hợp này giá của các vectơ a→, b→, c→ luôn luôn song song với một mặt phẳng.
a) Ba vectơ a→, b→, c→ không đồng phẳng
b) Ba vectơ a→, b→, c→ đồng phẳng
Chú ý: Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vectơ nói trên không phụ thuộc vào việc chọn điểm O.
Từ đó ta có định nghĩa sau đây:
2. Định nghĩa
Trong không gian ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.
3. Điều kiện để ba vectơ đồng phẳng
Từ định nghĩa ba vectơ đồng phẳng và từ định lí về sự phân tích (hay biểu thị) một vectơ theo hai vectơ hai vectơ không cùng phương trong hình học phẳng chúng ta có thể chứng minh được định lí sau đây:
Định lí 1
Trong không gian cho hai vectơ a→, b→ không cùng phương và vectơ c→. Khi đó ba vectơ a→, b→, c→ đồng phẳng khi và chỉ khi có cặp số m, n sao cho c→ = ma→ + nb→. Ngoài ra cặp số m, n là duy nhất.
Định lí 2
Trong không gian cho ba vectơ không đồng phẳng a→, b→, c→. Khi đó với mọi vectơ x→ ta đều tìm được một bộ ba số m, n, p sao cho x→ = ma→ + nb→ + pc→. Ngoại ra bộ ba số m, n, p là duy nhất.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Hai đường thẳng vuông góc
- Lý thuyết Đường thẳng vuông góc với mặt phẳng
- Lý thuyết Hai mặt phẳng vuông góc
- Lý thuyết Khoảng cách
- Lý thuyết Tổng hợp chương Vectơ trong không gian. Quan hệ vuông góc trong không gian
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều