Lý thuyết Hai đường thẳng chéo nhau và hai đường thẳng song song lớp 11 (hay, chi tiết)
Bài viết Lý thuyết Hai đường thẳng chéo nhau và hai đường thẳng song song lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hai đường thẳng chéo nhau và hai đường thẳng song song.
Bài giảng: Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song - Thầy Lê Thành Đạt (Giáo viên VietJack)
1. Vị trí tương đối của hai đường thẳng phân biệt
Cho hai đường thẳng a và b. Căn cứ vào sự đồng phẳng và số điểm chung của hai đường thẳng ta có bốn trường hợp sau:
a. Hai đường thẳng song song: cùng nằm trong một mặt phẳng và không có điểm chung, tức là
b. Hai đường thẳng cắt nhau: chỉ có một điểm chung.
a cắt b khi và chỉ khi a ⋂ b = I.
c. Hai đường thẳng trùng nhau: có hai điểm chung phân biệt.
a ⋂ b = {A, B} ⇔ A ≡ B
d. Hai đường thẳng chéo nhau: không cùng thuộc một mặt phẳng.
a chéo b khi và chỉ khi a, b không đồng phẳng.
a song song với b
a cắt b tại giao điểm I
a và b cắt nhau tại vô số điểm (trùng)
a và b chéo nhau
2. Hai đường thẳng song song
Tính chất 1: Trong không gian, qua một điểm nằm ngoài một đường thẳng có một và chỉ một đường thẳng song song với đường thẳng đó.
Tính chất 2: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì song song với nhau.
Định lí: (về giao tuyến của hai mặt phẳng): Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.
Hệ quả: Nếu hai mặt phẳng lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó (hoặc trùng với một trong hai đường thẳng đó).
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Lý thuyết Đường thẳng và mặt phẳng song song
- Lý thuyết Hai mặt phẳng song song
- Lý thuyết Phép chiếu song song. Hình biểu diễn của một hình không gian
- Lý thuyết Tổng hợp chương Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
- Lý thuyết Vectơ trong không gian
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều