Phương pháp giải bài tập Cấp số cộng cực hay
Bài viết Phương pháp giải bài tập Cấp số cộng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp giải bài tập Cấp số cộng.
Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và d.
Cho cấp số cộng (un). Khi đó:
un= u1+ (n-1)d: số hạng tổng quát của cấp số cộng;
d: công sai của cấp số cộng
Bài 1: Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120.
Đáp án và hướng dẫn giải
Giả sử bốn số hạng đó là a – 3x, a – x, a + x, a + 3x với công sai là d = 2x. Khi đó, ta có:
Vậy bốn số cần tìm là 2,4,6,8.
Bài 2: Cho cấp số cộng
1. Tính số hạng thứ 100 của cấp số ;
2. Tính tổng 15 số hạng đầu của cấp số ;
3. Tính S = u4 + u5 + …+ u30.
Đáp án và hướng dẫn giải
Từ giả thiết bài toán, ta có:
1. Số hạng thứ 100 của cấp số: u_100=u_1+99d=-295
2. Tổng của 15 số hạng đầu:
3. Ta có:
Bài 1: Cho CSC
1. Xác định công sai và công thức tổng quát của cấp số;
2. Tính S = u1 + u4 + u7 + …+ u2011.
Lời giải:
Gọi d là công sai của CSC, ta có:
1. Ta có công sai d = 3 và số hạng tổng quát : un = u1 + (n-1)d = 3n-2.
2. Ta có các số hạng u1, u4, u7,..., u2011 lập thành một CSC gồm 670 số hạng với công sai d’ = 3d, nên ta có:
Bài 2: Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính
Lời giải:
Gọi d là công sai của cấp số đã cho
Ta có: S100 = 50(2u1 + 99d) = 24850
Ta có
Bài 3: Cho cấp số cộng (un). Xác định cấp số cộng
Lời giải:
Ta có:
Vậy công thức của CSC là : un = u1 + (n-1)d = 70-20n
Bài 4: Với CSC ở câu 3. Tính tổng S = u5 + u7 + …+ u2011
Lời giải:
Ta có u5, u7, …, u2011 lập thành CSC với công sai d = và có 1003 số hạng nên
Bài 5: Cho cấp số cộng (un) có u1 = 4 và d = -5 Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Lời giải:
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Phương pháp quy nạp toán học
- Trắc nghiệm phương pháp quy nạp toán học
- Dạng 2: Xác định số hạng của dãy số
- Trắc nghiệm xác định số hạng của dãy số
- Dạng 3: Tính đơn điệu, tính bị chặn của dãy số
- Trắc nghiệm tính đơn điệu, tính bị chặn của dãy số
- Trắc nghiệm cấp số cộng
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều