Phương pháp xác định tính đúng sai của mệnh đề và cách giải



Với Phương pháp xác định tính đúng sai của mệnh đề và cách giải sẽ giúp học sinh nắm vững lý thuyết, biết cách và phương pháp giải các dạng bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 10.

Phương pháp xác định tính đúng sai của mệnh đề và cách giải

1. Lý thuyết:

- Mệnh đề là một câu khẳng định đúng hoặc một câu khẳng định sai.

- Tính đúng - sai có thể chưa xác định hoặc không biết nhưng chắc chắn đúng hoặc sai cũng là một mệnh đề.

- Một mệnh đề không thể vừa đúng vừa sai.

2. Phương pháp giải:

- Dựa vào định nghĩa mệnh đề để xác định tính đúng, sai của mệnh đề đó.

- Với mệnh đề chứa biến: Tìm tập D của các biến x để P(x) đúng hoặc sai.

3. Ví dụ minh họa:

Ví dụ 1: Xác định tính đúng sai của các mệnh đề sau:

a. 4 là số chẵn.

b. 5 là số nguyên tố.

c. 2 là số chính phương.

Lời giải:

a. Mệnh đề đúng. 

b. Mệnh đề đúng vì 5 chỉ có đúng 2 ước là 1 và chính nó nên 5 là số nguyên tố.

(Số nguyên tố là những số tự nhiên và chỉ có 2 ước là 1 và chính nó)

c. Mệnh đề sai vì 2 không biểu diễn được dưới dạng bình phương của một số tự nhiên nên nó không phải số chính phương.

Ví dụ 2: Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

a. Nếu a ≥ b thì a2 ≥ b2 thì  .

b. Nếu a chia hết cho 3 thì a chia hết cho 6 .

c. Số π lớn hơn 2 và nhỏ hơn 4 .

d. 2 và 3 là hai số nguyên tố cùng nhau.

Lời giải:

a. Mệnh đề sai, chẳng hạn -1 > -2 nhưng (-1)2 < (-2)2 .

b. Mệnh đề sai, chẳng hạn 15 chia hết cho 3 nhưng 15 không chia hết cho 6.

c. Mệnh đề đúng. Ta có π = 3,141519 , suy ra π lớn hơn 2 và nhỏ hơn 4.

d. Mệnh đề đúng vì 2 và 3 có ước chung lớn nhất bằng 1 nên 2 và 3 là hai số nguyên tố cùng nhau.

Ví dụ 3: Xét tính đúng, sai của các mệnh đề:

a. ∀x ∈ R; x2 + 1 ≥ 0 .

b. ∀x ∈ Q; 9x2 - 4 = 0  .

c. ∀x ∈ Q; 3x2 - 5 = 0  .

Lời giải:

a. Mệnh đề đúng vì x2 + 1 ≥ 1 > 0; ∀x ∈ R.

b. Mệnh đề đúng vì tồn tại x = Xác định tính đúng sai của mệnh đềlà số hữu tỉ để 9x2 - 4 = 0 .

c. Mệnh đề sai vì với x =Xác định tính đúng sai của mệnh đềlà số hữu tỉ thì 3x2 - 5 ≠ 0  .

Xác định tính đúng sai của mệnh đề

4. Bài tập tự luyện:

Câu 1: Trong các phát biểu sau, phát biểu nào là mệnh đề đúng:

A. π  là một số hữu tỉ.

B. Tổng của hai cạnh một tam giác lớn hơn cạnh thứ ba.

C. Bạn có chăm học không?

D. Hôm nay trời đep quá!

Lời giải:

Chọn B. Đáp án B nằm trong bất đẳng thức tam giác: “ Trong một tam giác, tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại”.

Đáp án A sai vì π  là một số vô tỉ.

Đáp án C sai vì đây là câu hỏi.

Đáp án D sai vì đây là câu cảm thán.

Câu 2 : Trong các mệnh đề sau, tìm mệnh đề đúng?

A. ∀x ∈ R; x2 < 0  . 

B. ∀x ∈ N; x : 3 .     

C. ∀x ∈ R; -x2 < 0       

D. ∃x ∈ R; x > x2.

Hướng dẫn :

Chọn D. Ta có: tồn tại 0,5 ∈ R để 0,5 > 0,52.

Đáp án A sai vì với x = 0 thì x2 = 0   .

Đáp án B sai vì với x = 5 thì  5 không chia hết cho 3.

Đáp án C sai vì với x = 0 thì -x2 = 0 .

Câu 3: Cho mệnh đề chứa biến: P(x) = "x + 15 ≤ x2 ∀x ∈ R". Mệnh đề nào sau đây là đúng?

A. P(0).

B. P(5).       

C. P(3).       

D. P(4).

Lời giải:

Chọn B.

Vì thay lần lượt các giá trị x bằng 0; 5; 3; 4 vào P(x) ta thấy x = 5 cho mệnh đề đúng.

Câu 4: Cho các mệnh đề sau: 

  P: “∃x ∈ R: x2 = -4”;   Q: “∀x ∈ R: x2 + x + 1 ≠ 0”;   R: “∀x ∈ R: x2 > 0”.

Phát biểu nào đúng trong các phát biểu dưới đây:

A. P sai, Q sai, R đúng.           

B. P sai, Q đúng, R đúng.

C. P đúng, Q đúng, R sai.                 

D. P sai, Q đúng, R sai.

Lời giải:

Chọn D.

Mệnh đề P sai vì không có số thực nào có bình phương là số âm.

Mệnh đề Q đúng vì phương trình  x2 + x + 1 = 0 vô nghiệm nên với mọi số thực thì x2 + x + 1 ≠ 0 .

Mệnh đề R sai vì có giá trị x = 0 để 02 = 0.

Câu 5: Trong các mệnh đề sau, mệnh đề nào sai:

A. Xác định tính đúng sai của mệnh đề  .

B. 1 là số nguyên tố.

C. Xác định tính đúng sai của mệnh đề  .

D. -2 ∈ Z .

Lời giải:

Chọn B. Đáp án B sai vì số nguyên tố phải là số tự nhiên lớn hơn 1.

Đáp án A đúng vì Xác định tính đúng sai của mệnh đề   .

Đáp án C đúng vìXác định tính đúng sai của mệnh đề  .

Đáp án D đúng.

Câu 6: Cho biết x là một phần tử của tập hợp A, xét các mệnh đề sau:

 (I): x ∈ A                     (II): ∈ A               (III): x ⊂ A              (IV): ⊂ A

Trong các mệnh đề trên, mệnh đề nào là đúng:

A. I và II.    

B. I và III.   

C. I và IV.

D. II và IV.

Lời giải:

Chọn C.

(II): ∈ A sai do giữa hai tập hợp và A không có quan hệ “thuộc”.

(III): x ⊂ A sai do giữa phần tử x và tập hợp A không có quan hệ “con”.

Câu 7: Cho tam giác ABC với H là chân đường cao từ A. Mệnh đề nào sau đây sai?   

A. “ABC là tam giác vuông ở A thì Xác định tính đúng sai của mệnh đề  ”.

B. “ABC là tam giác vuông ở A thì AB2 = BH.BC ”.

C. “ABC là tam giác vuông ở A thì HA2 = HB.HC  ”.

D. “ABC là tam giác vuông ở A thì BA2 = BC2 + AC2 ”.

Hướng dẫn :

Chọn D. Đáp án đúng phải là: ABC là tam giác vuông ở A thì BC2 = AB2 + AC2  ( định lý Pitago).

Các đáp án A, B, C là hệ thức lượng trong tam giác vuông.

Câu 8: Cho mệnh đề chứa biến P(n): n2 - 1 chia hết cho 4 với n là số nguyên. Xét xem các mệnh đề P(5) và P(2) đúng hay sai?

A. P(5) đúng và P(2) đúng.      

B. P(5) sai và P(2) sai.

C. P(5) đúng và P(2) sai.         

D. P(5) sai và P(2) đúng.

Lời giải:

Chọn C. 

Thay n = 5 vào n2 - 1 ta được P(5) = 24. Thay n = 2 vào n2 - 1 ta được P(2) = 3. P(5)  đúng do 24 : 4  còn P(2)  sai do 3 không chia hết cho 4 .

Câu 9: Với giá trị thực nào của x mệnh đề chứa biến P(x): 2x2 - 1 < 0 là mệnh đề đúng:

A. 0.  

B. 5.  

C. 1.  

D. Xác định tính đúng sai của mệnh đề.

Hướng dẫn

Chọn A. Thay lần lượt các giá trị của x là 0; 5; 1; 4 vào P(x) ta thấy P(0) = 2.02 - 1 = -1 < 0  nên đáp án đúng là A.

Câu 10: Mệnh đề nào sau đây sai?

A. Xác định tính đúng sai của mệnh đề không phải là số hữu tỉ.

B. 2021 là số tự nhiên lẻ.

C.  π là một số vô tỉ.

D. |-10| > |-20| .

Lời giải:

Chọn D. Vì |-10| = 10; |-20| = 20 nên |-10| < |-20| .

Đáp án A đúng vì √5 là số vô tỉ, không phải số hữu tỉ.

Đáp án B đúng vì số lẻ là số có tận cùng là 1; 3; 5; 7; 9.

Đáp án C đúng vì  π là một số vô tỉ.

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:

Lời giải bài tập lớp 10 sách mới:


menh-de-tap-hop.jsp


Giải bài tập lớp 10 sách mới các môn học